CONGRUENCES ON INVERSE SEMIGROUPS

Inverse elements in semigroups

We say that $y \in S$ is regular if there exists $x \in S$ such that y = yxy.

We say that $y \in S$ is an **inverse element** of $x \in S$, if

x = xyx and y = yxy.

Note that an inverse element of x, if such an element exists, need not be unique.

Lemma 1. Each regular element $x \in S$ has an inverse element.

Proof. If $x \in S$ is regular, then for some $y \in S$, x = xyx. Now, yxy = yxy.

х • уху,

and so yxy is also regular. Also, $x = x \cdot yxy \cdot x$ and consequently yxy is an inverse

element of x.

Theorem 2. Let ρ be a congruence of a regular semigroup S, then $x \rho \in E_{S/\rho} \implies \exists e \in E_S : x \rho = e \rho$.

Theorem 3. If $\alpha : S \rightarrow P$ is a homomorphism from a regular semigroup S, then α (S) is regular. In particular, if α is an epimorphism, then P is regular.

A semigroup S is called an **inverse semigroup**, if each $x \in S$ has a *unique* inverse

element x^{-1} :

 $x = xx^{-1}x$ and $x^{-1} = x^{-1}xx^{-1}$.

The semilattice of idempotents

If $e \ \in E_S$ for an inverse semigroup S , then $eee \ = e,$ and hence for all idempotents e,

 $e^{-1} = e$.

Theorem 4. Let S be an inverse semigroup. Then the idempotents E_S form a subsemigroup of S. Moreover, E_S is a semilattice, that is, the idempotents of an inverse semigroup commute.

Proof. Let $e, f \in E_s$ and consider the (unique) inverse element $x = (ef)^{-1}$ of ef. Now.

ef = ef $\cdot x \cdot ef$ = ef $\cdot xe \cdot ef$ and ef = ef $\cdot x \cdot ef$ = ef $\cdot fx \cdot ef$ and $xe \cdot ef \cdot xe$ = $xefx \cdot e$ = xe , $fx \cdot ef \cdot fx$ = f $\cdot xefx$ = fx .

This means that $x = (ef)^{-1} = xe = fx$. Here $x \in E_s$, since

 $x^2 = x e \ \cdot f x = x \ \cdot e f \ \cdot x = x$,

and so $ef \in E_s$ for all $e, f \in E_s$, that is, E_s is a subsemigroup of S. Further, E_s is commutative: For $e, f \in E_s$, also $ef, fe \in E_s$, and $ef \cdot fe \cdot ef = efef = (ef)^2 = ef$ and $fe \cdot ef \cdot fe = fefe = (fe)^2 = fe$, meaning that $fe = (ef)^{-1} = ef$.

Corollary 5. Assume $S = [X]_S$. If each generator $x \in X$ has a unique inverse element, then S is an inverse semigroup: $(x_1x_2 \dots x_n)^{-1} = x_n^{-1} x_{n-1}^{-1} \dots x_1^{-1}$ for all $x_i \in X$.

Corollary 6. In an inverse semigroup S, for all $x \in S$, $x = (x^{-1})^{-1}$.

A characterization

Theorem 7. Let *S* be a semigroup. The following are equivalent: 1. *S* is an inverse semigroup.

2. S is regular and its idempotents commute.

3. Each L-class and R-class contains an idempotent.

Where L and R are Green-relations.

Proof. Case (1) implies Case (2) by Theorem 4.

Suppose Case (2). Since each L-class and R-class contains a unique idempotent.

For the uniqueness let $f \in L_e$, where e, $f \in E_s$. Hence eLf, and therefore

there are x, $y \in S^1$ such that e = xf and f = ye. From here we obtain

e = xf = xff = ef = fe = yee = ye = f.

Similarly, eRf implies that e = f. So Case (2) implies Case (3).

Suppose Case (3). Now each D-class contains an idempotent, where $D = L^{\circ}R$, and hence, by (D-class is regular if and only if it contains an

idempotent), each $x \in S$ has an inverse element. Suppose an element x has

two inverse elements y and z. Now, yx, $zx \in E_s$ with yxLx and zxLx.

Then, by assumption, yx = zx.

A similar reasoning using R shows that xy = xz. Therefore y = yxy = zxz = z, and Case (1) follows.

Corollary 8. Let S be an inverse semigroup. Then

 $\forall x \in S : x^{-1}E_S x \ \sqsubseteq E_S$.

Theorem 9. Let S be an inverse semigroup, and let x, $y \in S$ and e, $f \in$

E_s. Then 1. $xLy \iff x^{-1}x = y^{-1}y$. 2. $xRy \iff xx^{-1} = yy^{-1}$. 3. $eDf \iff \exists z \in S : e = zz^{-1}$ and $f = z^{-1}z$.

Partial ordering inverse semigroups

Recall that in any semigroup S the idempotents can be partially ordered by the relation:

 $e \leq f \iff ef = e = fe$.

This partial order generalizes in an inverse semigroup S to all elements of S as follows,

 $x \leq y \iff \exists e \in E_S : x = ey$.

Indeed, here \leq is

• reflexive, since $x = (xx^{-1}) \cdot x$, where $xx^{-1} \in E_s$;

• antisymmetric, since if x = ey and y = fx, then x = ey = eey = ex, and so

x = ey = efx = fex = fx = y;

• transitive, since if x = ey and y = fz, then also x = ey = efz, where ef

 $\in E_{S}.$

If you restrict \leq onto E_s you get the above partial order of idempotents. Indeed, if

 $e \leq f$, then there exists $g \in E_s$ such that e = gf, and here e = gff = ef = fe as required.

Lemma 10. In an inverse semigroup S we have $x \leq y \iff \exists e \in E_S : x = ye \iff xx^{-1} = yx^{-1} \iff x = xy^{-1}x$ $\iff xx^{-1} = xy^{-1} \iff x^{-1}x = y^{-1}x \iff x^{-1}x = x^{-1}y \iff x = xx^{-1}y$.

Partial mappings

Let $X \neq \emptyset$ be a set. A **partial mapping** $\alpha : X \to X$ is a function from a subset $Y = \text{dom}(\alpha)$ of X onto $\text{ran}(\alpha) = \alpha(Y) \subseteq X$. A partial mapping $\alpha : X \to X$ is **undefined** on all x not belonging to $\text{dom}(\alpha)$.

We say that a partial mapping $\alpha : X \to X$ is **injective**, if $\alpha (x) \neq \alpha (y)$ for all $x \neq y$ with x, $y \in \text{dom}(\alpha)$. The injective partial mappings form a semigroup, denoted I_x , under the usual composition: $(\beta \alpha)(x) = \beta (\alpha (x))$ if $x \in \text{dom}(\alpha)$ and $\alpha (x) \in \text{dom}(\beta)$.

We observe that

dom($\beta \alpha$) = α^{-1} (ran(α) \cap dom(β)) and

 $ran(\beta \alpha) = \beta (ran(\alpha) \cap dom(\beta)).$

We denote by $\iota_Y : X \to X$ the partial function such that dom($\iota_Y) = Y = ran(\iota)$

and $\iota_{Y}(y) = y$ for all $y \in Y$.

Theorem 11. I_X *is an inverse semigroup.*

The Vagner-Preston representation

Theorem 12. Each inverse semigroup S has a faithful representation as a semigroup of injective partial mappings, that is, there exists an embedding $\phi: S \rightarrow I_X$ for some set X.

Congruences of Inverse semigroups Heritage of images

Lemma 13. Let S be an inverse semigroup and $\alpha : S \rightarrow P$ a homomorphism. Then α (S) is an inverse subsemigroup of P.

Corollary 14. If ρ is a congruence of an inverse semigroup S, then S/ ρ is an inverse semigroup. Therefore,

Lemma 15. Let S be an inverse semigroup, and ρ its congruence. Then $x \rho y \iff x^{-1} \rho y^{-1}$.

We obtain also that for each homomorphism $\alpha : S \rightarrow P$ for an inverse semigroup S,

 $\forall \mathbf{x} \in \mathbf{S} : \alpha (\mathbf{x}^{-1}) = \alpha (\mathbf{x})^{-1} .$

A subsemigroup T of an inverse semigroup S is called a **inverse**

subsemigroup, if for all $x \in T$ also $x^{-1} \in T$, where x^{-1} is the inverse element of x in S. Notice that not all subsemigroups of an inverse semigroup are inverse subsemigroups.

The following lemma is an exercise.

Lemma 16. *Let* S *be an inverse semigroup, and let* A *be a subsemigroup of* S. *Then*

A is an inverse subsemigroup of S if and only if $x^{-1} \in A$ for all $x \in A$.

Lemma 17. Let S be an inverse semigroup, $\alpha : S \rightarrow P$ an epimorphism, and let $e \in E_P$. Then $\alpha^{-1}(e)$ is an inverse subsemigroup of S.

Theorem 18. Let I be an ideal of a semigroup S. Then S is an inverse semigroup if and only if I and S/I are inverse semigroups

Kernels and traces RES?

Let ρ be a congruence of a semigroup S.We define its **kernel** ker(ρ) and **trace** tr(ρ) as follows:

 $\operatorname{ker}(\rho) = \{ x \in S \mid x \rho e \text{ for some } e \in E_S \} = \bigcup e \rho \text{ for all } e \in E_S$

tr(ρ) = ρ (res)E = {(e, f) | e, f \in E_S}.

Theorem 19. Let S be an inverse semigroup. Then for all congruences ρ and δ ,

 $\rho \ \subseteq \ \delta \ \Leftarrow \forall e \ \in E_s \ : e \ \rho \ \subseteq e \ \delta \ .$

Corollary 20. For an inverse semigroup S,

 $\rho = \delta \iff \forall e \in E_S : e \rho = e \delta$ for all congruences ρ and δ .

We have then Vagner's theorem:

Theorem 21. Let S be an inverse semigroup, and let ρ and δ be its congruences. Then

 $\rho = \delta \iff \ker(\rho) = \ker(\delta) and \operatorname{tr}(\rho) = \operatorname{tr}(\delta).$

In other words, If $\alpha : S \to P$ and $\beta : S \to T$ are epimorphisms from an inverse semigroup S, then ker(α) = ker(β) if and only if for all $x \in S$ and

e,
$$f \in E_S$$
,
 $\alpha(x) \in E_P \iff \beta(x) \in E_T$,
 $\alpha(e) = \alpha(f) \iff \beta(e) = \beta(f)$.

Classifications according to traces

Congruences of an inverse semigroup are classified according to their traces.

Lemma 22. For all $x \in S$ and $e \in E_S$, $x^{-1}ex \in E_S$.

For a congruence ρ of an inverse semigroup S, we obtain a congruence ρ_{\min} by defining

 $x \rho_{\min} y \iff \exists e \in E_S : xe = ye, x^{-1}x \rho e \text{ and } y^{-1}y \rho e$.

The next theorem states that ρ_{\min} identifies as few elements as possible under the restriction that it should identify exactly the same idempotents as the original ρ . In this way the quotient S/ ρ_{\min} is as large as possible.

Theorem 23. For a congruence ρ of an inverse semigroup S, ρ_{\min} is the smallest congruence whose trace equals tr(ρ).

In particular, we have that $\rho_{\min} \subseteq \rho$ for all congruences ρ of an inverse semigroup S.

For a congruence ρ of an inverse semigroup S define ρ_{max} by

 $x \rho_{max} y \iff \forall e \in E_S : x^{-1} ex \rho y^{-1} ey$.

Theorem 24. Let S be an inverse semigroup and ρ its congruence. Then ρ_{\max} is the largest congruence of S whose trace equals tr(ρ).

The above theorem states that ρ_{max} identifies as many elements of S as possible with the restriction that it does not identify any idempotents unless ρ does so. Certainly,

 $\rho \subseteq \rho_{\text{max}}$, and so the quotient S/ ρ_{max} is an epimorphic image of S/ ρ .

Group congruences

We say that a congruence ρ of a semigroup S is a **group congruence**, if S/ ρ is a group.

The following lemma holds already for regular semigroups.

Lemma 25. An inverse semigroup is a group if and only if it has a unique idempotent.

For a congruence ρ of an inverse semigroup, we have by Theorem 2 that $x \rho \in F_0/\rho \implies \exists \rho \in F_0 : \rho \rho = x \rho$

 $\mathbf{x} \ \rho \ \in \mathbf{E}_{\mathrm{S}} / \ \rho \ \Longrightarrow \exists \mathbf{e} \ \in \mathbf{E}_{\mathrm{S}} : \mathbf{e} \ \rho \ = \mathbf{x} \ \rho$,

and hence

Theorem 26. A congruence ρ of an inverse semigroup S is a group congruence if and only if tr(ρ) = E_S × E_S.

Proof. If tr(ρ) = E_S × E_S, then S/ ρ has exactly one idempotent by Theorem 2. In the other direction the claim is equally clear.

If $\rho~$ is a group congruence of an inverse semigroup S, then so is $~\rho_{\rm min},$ because now

tr(ρ) = tr(ρ_{min}) = E_S × E_S. In particular, ρ_{min} is the smallest group congruence of S,

and for all group congruences δ of S, $\delta_{\min} = \rho_{\min}$.

The smallest group congruence of an inverse semigroup S is denoted by σ_{S} .

Let then ρ be a group congruence. Then $\sigma_{s} = \rho_{\min} \subseteq \rho$.

Every group G, which is a homomorphic image of S, is a homomorphic image of the group S/ σ_s , and in this sense S/ σ_s is a maximal homomorphic image of S.

Remark 27. If S is *not* an inverse semigroup, it need not have the smallest group congruence.

As an example consider $(N_+, +)$. The group congruences of this semigroup are exactly $\rho_n = \{(p, q) \mid p \equiv p(mod n)\}.$

Theorem 28 (Munn). In an inverse semigroup S,

 $x \mathrel{\sigma_{S} y} \iff \exists e \mathrel{\in} E_{S} : xe \mathrel{=} ye$.

Theorem 29. In an inverse semigroup S,

1. $x \sigma_{sy} \iff \exists e \in E_{s} : ex = ey.$

2. ker(σ_{S}) = {x \in S | $\exists y \in S : xy = x$ }.

Idempotent separating congruences

A group congruence puts all idempotents in the same congruence class. An idempotent separating congruence does the opposite, it puts different idempotents to different classes.

A congruence ρ of a semigroup S is **idempotent separating**, if

 $\forall e, f \in E_S : e \rho f \implies e = f .$

From this definition we have immediately

Lemma 30. If ρ is an idempotent separating congruence of an inverse semigroup S, then tr(ρ) = $\iota_E = \{(e, e) \mid e \in E_S\}$.

By Theorem 24, for each inverse semigroup S there exists the **greatest** idempotent separating congruence, which will be denoted by $\mu_{\rm S}$. Theorem 31. For all inverse semigroups S,

 $x \mu_{S} y \iff \exists e \in E_{S} : x^{-1} ex = y^{-1} ey$.