
CONGRUENCES ON 

INVERSE SEMIGROUPS 
 

Inverse elements in semigroups 
 

We say that y ∈ S is regular if there exists x ∈ S such that y = yxy . 

We say that y ∈ S is an inverse element of x ∈ S, if 

x = xyx and y = yxy . 

Note that an inverse element of x, if such an element exists, need not be 

unique. 

Lemma 1. Each regular element x ∈ S has an inverse element. 

Proof. If x ∈ S is regular, then for some y ∈ S, x = xyx. Now, yxy = yxy · 

x · yxy, 

and so yxy is also regular. Also, x = x · yxy · x and consequently yxy is 

an inverse 

element of x. 

Theorem 2. Let ρ be a congruence of a regular semigroup  S, then 

xρ ∈ ES/ρ =⇒ ∃e ∈ ES : xρ = eρ . 

Theorem 3. If α: S → P is a homomorphism from a regular semigroup S, 

then α(S) 

is regular. In particular, if α is an epimorphism, then P is regular. 

A semigroup S is called an inverse semigroup, if each x ∈ S has a unique 

inverse 

element x−1: 

x = xx−1x and x−1 = x−1xx−1 . 

The semilattice of idempotents 

If e ∈ ES for an inverse semigroup S , then eee = e, and hence for all 

idempotents e, 



e−1 = e. 

Theorem 4. Let S be an inverse semigroup. Then the idempotents ES form a 

subsemigroup of S. Moreover, ES is a semilattice, that is, the idempotents of 

an inverse semigroup commute. 

Proof. Let e, f ∈ ES and consider the (unique) inverse element x = (ef)−1 

of ef. 

Now, 

ef = ef · x · ef = ef · xe · ef and 

ef = ef · x · ef = ef · fx · ef 

and 

xe · ef · xe = xefx · e = xe , 

fx · ef · fx = f · xefx = fx . 

This means that x = (ef)−1 = xe = fx. Here x ∈ ES, since 

x2 = xe · fx = x · ef · x = x , 

and so ef ∈ ES for all e, f ∈ ES, that is, ES is a subsemigroup of S. 

Further, ES is commutative: For e, f ∈ ES, also ef, fe ∈ ES, and 

ef · fe · ef = efef = (ef)2 = ef and fe · ef · fe = fefe = (fe)2 = fe , 

meaning that fe = (ef)−1 = ef. 

Corollary 5. Assume S = [X]S. If each generator x ∈ X has a unique inverse 

element, 

then S is an inverse semigroup: 

(x1x2 . . . xn)−1 = xn−1 xn-1
−1. . . x1

−1 

for all xi ∈ X. 

Corollary 6. In an inverse semigroup S, for all x ∈ S, x = (x−1)−1. 

 

A characterization 
 

Theorem 7. Let S be a semigroup. The following are equivalent: 

1. S is an inverse semigroup. 



2. S is regular and its idempotents commute. 

3. Each L-class and R-class contains an idempotent. 

Where L and R are Green-relations. 

Proof. Case (1) implies Case (2) by Theorem 4. 

Suppose Case (2). Since  each L-class and R-class contains a unique 

idempotent. 

For the uniqueness let f ∈ Le, where e, f ∈ ES. Hence eLf, and therefore 

there are x, y ∈ S1 such that e = xf and f = ye. From here we obtain 

e = xf = xff = ef = fe = yee = ye = f . 

Similarly, eRf implies that e = f. So Case (2) implies Case (3). 

Suppose Case (3). Now each D-class contains an idempotent, where D = 

L°R, and hence, by (D-class is regular if and only if it contains an 

idempotent), each x ∈ S has an inverse element. Suppose an element x has 

two inverse elements y and z. Now, yx, zx ∈ ES with yxLx and zxLx. 

Then, by assumption, yx = zx. 

A similar reasoning using R shows that xy = xz. Therefore y = yxy = zxz 

= z, and  Case (1) follows. 

Corollary 8. Let S be an inverse semigroup. Then 

∀x ∈ S : x−1ESx ⊆ ES . 

Theorem 9. Let S be an inverse semigroup, and let x, y ∈ S and e, f ∈ 

ES. Then 

1. xLy ⇐⇒ x−1x = y−1y. 

2. xRy ⇐⇒ xx−1 = yy−1. 

3. eDf ⇐⇒ ∃z ∈ S : e = zz−1 and f = z−1z. 

 

Partial ordering inverse semigroups 
 

Recall that in any semigroup S the idempotents can be partially ordered by 

the relation: 

e ≤ f ⇐⇒ ef = e = fe . 

This partial order generalizes in an inverse semigroup S to all elements of S 
as follows, 

x ≤ y ⇐⇒ ∃e ∈ ES : x = ey . 



Indeed, here ≤ is 

• reflexive, since x = (xx−1) · x, where xx−1 ∈ ES; 

• antisymmetric, since if x = ey and y = fx, then x = ey = eey = ex, and 

so 

x = ey = efx = fex = fx = y; 

• transitive, since if x = ey and y = fz, then also x = ey = efz, where ef 

∈ ES. 

If you restrict ≤ onto ES you get the above partial order of  idempotents. 

Indeed, if 

e ≤ f, then there exists g ∈ ES such that e = gf, and here e = gff = ef = 

fe as  required. 

 

Lemma 10. In an inverse semigroup S we have 

x ≤ y ⇐⇒ ∃e ∈ ES : x = ye ⇐⇒ xx−1 = yx−1 ⇐⇒ x = xy−1x 

⇐⇒ xx−1 = xy−1 ⇐⇒ x−1x = y−1x ⇐⇒ x−1x = x−1y ⇐⇒ x = xx−1y . 

Partial mappings 

Let X ≠ ∅ be a set. A partial mapping α: X → X is a function from a 

subset Y = dom(α) of X onto ran(α) = α(Y ) ⊆ X. A partial mapping α: X 

→ X is undefined on all x not belonging to dom(α). 

We say that a partial mapping α: X → X is injective, if α(x) ≠ α(y) for all 

x ≠ y with x, y ∈ dom(α). The injective partial mappings form a  

semigroup, denoted  IX, under the usual composition: 

(βα)(x) = β(α(x)) if x ∈ dom(α) and α(x) ∈ dom(β) . 

We observe that 

dom(βα) = α−1(ran(α) ∩ dom(β)) and 

 ran(βα) = β(ran(α) ∩ dom(β)) . 

We denote by ιY : X → X the partial function such that dom(ιY ) = Y = 

ran(ι) 



and ιY (y) = y for all y ∈ Y . 

Theorem 11. IX is an inverse semigroup. 

The Vagner-Preston representation 
 

Theorem 12. Each inverse semigroup S has a faithful representation as a 

semigroup of injective partial mappings, that is, there exists an embedding 

ϕ: S → IX for some set X. 

 

Congruences of Inverse semigroups 

Heritage of images 
 

Lemma 13. Let S be an inverse semigroup and α: S → P a 

homomorphism. Then 

α(S) is an inverse subsemigroup of  P. 

Corollary 14. If ρ is a congruence of an inverse semigroup S, then S/ρ 
is an inverse semigroup. 

Therefore, 

Lemma 15. Let S be an inverse semigroup, and ρ its congruence. Then 

xρy ⇐⇒ x−1ρy−1 . 

We obtain also that for each homomorphism α: S → P for an inverse 

semigroup S, 

∀x ∈ S : α(x−1) = α(x)−1 . 

 

A subsemigroup T of an inverse semigroup S is called a inverse 

subsemigroup, if for all x ∈ T also x−1 ∈ T, where x−1 is the inverse element 

of x in S. Notice that not all subsemigroups of an inverse semigroup are 

inverse subsemigroups. 

The following lemma is an exercise. 

Lemma 16. Let S be an inverse semigroup, and let A be a subsemigroup of 

S. Then 

A is an inverse subsemigroup of  S if and only if x−1 ∈ A for all x ∈ A. 



Lemma 17. Let S be an inverse semigroup, α: S → P an epimorphism, and 

let e ∈ EP . Then α−1(e) is an inverse subsemigroup of  S. 

Theorem 18. Let I be an ideal of a semigroup S. Then S is an inverse 

semigroup if  and only if I and S/I are inverse semigroups 

 

Kernels and traces 

RES? 
 

Let ρ be a congruence of a semigroup S.We define its kernel ker(ρ) and 

trace tr(ρ)  as follows: 

ker(ρ) = {x ∈ S | xρe for some e ∈ ES} = ∪ eρ for all e∈ES 

tr(ρ) = ρ(res)E = {(e, f) | e, f ∈ ES} . 

Theorem 19. Let S be an inverse semigroup. Then for all congruences ρ 

and δ, 

ρ ⊆ δ ⇐⇒ ∀e ∈ ES : eρ ⊆ eδ . 

Corollary 20. For an inverse semigroup S, 

ρ = δ ⇐⇒ ∀e ∈ ES : eρ = eδ 

for all congruences ρ and δ. 

 

We have then Vagner’s theorem: 

Theorem 21. Let S be an inverse semigroup, and let ρ and δ be its 

congruences. Then 

ρ = δ ⇐⇒ ker(ρ) = ker(δ) and tr(ρ) = tr(δ) . 

In other words, If α: S → P and β : S → T are epimorphisms from an 

inverse semigroup S, then ker(α) = ker(β) if and only if for all x ∈ S and 

e, f ∈ ES, 

α(x) ∈ EP ⇐⇒ β(x) ∈ ET , 

α(e) = α(f) ⇐⇒ β(e) = β(f) . 

Classifications according to traces 



Congruences of an inverse semigroup are classified according to their traces. 

Lemma 22. For all x ∈ S and e ∈ ES, x−1ex ∈ ES. 

For a congruence ρ of an inverse semigroup S, we obtain a congruence 

ρmin by  defining 

xρminy ⇐⇒ ∃e ∈ ES : xe = ye, x−1xρe and y−1yρe . 

The next theorem states that ρmin identifies as few elements as possible 

under the restriction that it should identify exactly the same idempotents as 

the original ρ. In this way the quotient S/ρmin is as large as possible. 

Theorem 23. For a congruence ρ of an inverse semigroup S, ρmin is the 

smallest congruence  whose trace equals tr(ρ). 

In particular, we have that ρmin ⊆ ρ for all congruences ρ of an inverse 

semigroup S. 

For a congruence ρ of an inverse semigroup S define ρmax by 

xρmaxy ⇐⇒ ∀e ∈ ES : x−1exρy−1ey . 

Theorem 24. Let S be an inverse semigroup and ρ its congruence. Then 

ρmax is the largest congruence of S whose trace equals tr(ρ). 

The above theorem states that ρmax identifies as many elements of S as 

possible with the restriction that it does not identify any idempotents unless 

ρ does so. Certainly, 

ρ ⊆ ρmax, and so the quotient S/ρmax is an epimorphic image of S/ρ. 

 

Group congruences 
 

We say that a congruence ρ of a semigroup S is a group congruence, if 

S/ρ is a group. 

The following lemma holds already for regular semigroups. 

Lemma 25. An inverse semigroup is a group if and only if it has a unique 

idempotent. 

For a congruence ρ of an inverse semigroup, we have by Theorem 2 that 

xρ ∈ ES/ρ =⇒ ∃e ∈ ES : eρ = xρ , 

and hence 



Theorem 26. A congruence ρ of an inverse semigroup S is a group 

congruence if and  only if tr(ρ) = ES × ES. 

Proof. If tr(ρ) = ES × ES, then S/ρ has exactly one idempotent by 

Theorem 2. In the other direction the claim is equally clear. 

If ρ is a group congruence of an inverse semigroup S, then so is ρmin, 

because now 

tr(ρ) = tr(ρmin) = ES × ES. In particular, ρmin is the smallest group 

congruence of S, 

and for all group congruences δ of S, δmin = ρmin. 

The smallest group congruence of an inverse semigroup S is denoted by 

σS. 

Let then ρ be a group congruence. Then σS = ρmin ⊆ ρ. 

Every group G, which is a homomorphic image of S, is a homomorphic 

image of the group S/σS, and in this sense S/σS is a maximal 

homomorphic image  of S. 

Remark 27. If S is not an inverse semigroup, it need not have the smallest 

group congruence. 

As an example consider (N+,+). The group congruences of this semigroup 

are  exactly ρn = {(p, q) | p ≡ p( mod n)}.  

Theorem 28 (Munn). In an inverse semigroup S, 

xσSy ⇐⇒ ∃e ∈ ES : xe = ye . 

Theorem 29. In an inverse semigroup S, 

1. xσSy ⇐⇒ ∃e ∈ ES : ex = ey. 

2. ker(σS) = {x ∈ S | ∃y ∈ S : xy = x}. 

 

Idempotent separating congruences 
 

A group congruence puts all idempotents in the same congruence class. An 

idempotent  separating congruence does the opposite, it puts different 

idempotents to different  classes. 

A congruence ρ of a semigroup S is idempotent separating, if 

∀e, f ∈ ES : eρf =⇒ e = f . 



From this definition we have immediately 

Lemma 30. If ρ is an idempotent separating congruence of an inverse 

semigroup S,  then tr(ρ) = ιE = {(e, e) | e ∈ ES}. 

By Theorem 24, for each inverse semigroup S there exists the greatest 

idempotent  separating congruence, which will be denoted by μS. 

Theorem 31. For all inverse semigroups S, 

xμSy ⇐⇒ ∃e ∈ ES : x−1ex = y−1ey . 

 

 


