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الرحيم الرحمن االله بسم  

Chapter I 

 

 

 

1. Groups, definitions  

2. Cyclic groups  

3. Permutation groups  

4. Cosets and normal subgroups  

5. Factor groups  

6. Group homomorphisms  

1.1 Groups.  

Modern definition of a group (Caley's definition). 

1.1.1 DEFINITION. A group (G, .) is a nonempty set G together with a 

binary operation . on G such that the following conditions hold:  

(i) Closure: For all a, b ∈ G the element a.b is a uniquely defined element of G.  

(ii) Associativity: For all a, b, c ∈ G, we have a.(b.c) = (a.b).c.  

(iii) Identity: There exists an identity element e ∈ G such that e.a = a and  a.e = a 

for all a ∈ G.  

(iv) Inverses: For each a ∈ G there exists an inverse element a-1 ∈ G such that: a.a-1 

= e and a-1.a = e.  

We will usually simply write ab for the product a.b.  

Remark: Identity e is unique, and inverse of any element a is unique. 

1.1.2 PROPOSITION. (Cancellation Property for Groups) Let G be a 

group, and let a, b, c ∈ G.  

(a) If ab = ac, then b = c.  

(b) If ac = bc, then a = b.  
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PROOF.  For (a) multiply by a-1 from the left. 

For (b) multiply by c-1 from the right. 

1.1.3 PROPOSITION.  Let G be a set with associative binary operation. 

Assume that ∃ e ∈ G such that: 

(a) Right identity : ae = a. 

(b) Right inverse: for every a ∈ G; ∃ b ∈ G with ab = e. 

Then G is a group. 

PROOF: For x, y, u ∈G, if xu = yu; we claim that x = y.  

By (b), choose v ∈ G with uv = e. Now  

x = xuv = yuv = ye = y. 

Next, we want to show that e is left identity i.e., for every a ∈ G we have e.a = 

a. Choose b ∈G with ab = e. 

(ea)b = e(ab) = ee = e = ab. 

Then, by our claim, ea = a. 

It remains to show that if ab = e then ba = e. 

(ba)b = b(ab) = be = b = eb, 

therefore again by the claim ba = e. 

1.1.4 DEFINITION. A group G is said to be abelian if ab = ba for all a, b ∈ 

G.  

1.1.5 DEFINITION. A group G is said to be a finite group if the set G has 

a finite number of elements. In this case, the number of elements is called the 

order of G, denoted by |G|.  

1.1.6 DEFINITION. Let a be an element of the group G. If there exists a 

positive integer n such that an = e, then a is said to have finite order, and the 

smallest such positive integer is called the order of a, denoted by o(a).  

If there does not exist a positive integer n such that an = e, then a is said to have 

infinite order.  
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1.1.7 DEFINITION. Let G be a group, and let H be a subset of G. Then H is 

called a subgroup of G if H is itself a group, under the operation induced by 

G. (we denote this by H ≤ G). 

1.1.8 PROPOSITION. Let G be a group with identity element e, and let H 

be a non-empty subset of G. Then H is a subgroup of G if and only if the 

following conditions hold:  

(i) ab ∈ H for all a, b ∈ H;  

(ii) a-1 ∈ H for all a ∈ H.  

PROOF: EXERCISE. 

Theorem  1.1.8 states the sufficient conditions for a no-empty subset H to be a 

subgroup. I.e., instead of checking all four conditions of the group we only 

check two conditions. 

In the following Exercise we can show even one condition is enough. 

EXERCISE.  Let G be a group with identity element e, and let H be a non-empty 

subset of G. Then H ≤ G if and only if the following conditions hold:  

   ab-1 ∈ H for all a, b ∈ H; 

REMARK. Identity in H is the same as the identity in G. 

1.1.9 DEFINITION.  Let G be a group. Let x ∈ G. The centralizer of x is 

the set  CG(x) = { y ∈ G| xy = yx }. 

EXERCISE.  Show that CG(x) is a subgroup of G. 

EXERCISE.  Let π be a collection of subgroups of G. Show that the set            H 

= ∩{K| K ∈ π } is a subgroup of G. 

1.1.10 DEFINITION. The center Z(G) = ∩{CG(x) for all x ∈ G}. 

EXERCISE.  Show that Z(G) is a subgroup of G. 
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1.2 Cyclic Groups 

1.2.1 DEFINITION. Let X be a non-empty set of G. The subgroup 

generated by X is  〈X〉 = ∩{H ≤ G | X ⊂ H}. 

We write 〈a〉 for 〈{a}〉. 〈a〉 is called the cyclic subgroup generated by a.  

The group G is called a cyclic group if there exists an element a ∈ G such that G = 

〈a〉. In this case a is called a generator of G.  

EXERCISE.  Show that 〈a〉 = { an| for some n ∈ Z}. 

1.2.2 DEFINITION. For a ∈ G, the order of a (denoted by o(a)) is the least 

positive integer n such that an = e.  If no such integer exist then we say that 

the order of a is infinite. 

1.2.3 PROPOSITION. Let a be an element of the group G.  

(a) If a has infinite order, and ak = am for integers k, m, then k = m.  

(b) If a has finite order and k is any integer, then ak = e if and only if o(a)|k.  

(c) If a has finite order o(a) = n, then for all integers k, m, we have ak = am  

if and only if k ≡ m (mod n). Furthermore, |〈a〉|= o(a).  

PROOF. (a) Assume that k > m. Since ak = am then  

ak-m = am-m = a0 = e,  

Since o(a) is infinite then k-m = 0. Hence k = m. 

(b) Let n = o(a). By division algorithm, we have  

k = qn + r with 0 ≤ r < n.  

If r > 0, then  

ak = aqn + r = aqn ar.  

Therefore  

ar = aka-qn = ee = e.  

This contradicts that the order of a is n.  

Therefore r = 0. Thus n | k. 
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(c)    ak = am iff ak-m = e.  

Therefore by (b), n | k-m, then k ≡ m (mod n).  

Conversely if k ≡ m (mod n) then n | k-m. Therefore k-m = qn for some integer 

q, so  

ak-m = (an)q = eq = e. 

Furthermore, the only different elements are  

{a0 = e, a, a2, …, an-1}.  

Hence |〈a〉| = o(a). 

EXERCISE. Let G be a group. And let H ⊂ G with |H| < ∞.  

Show that H is a subgroup of G iff xy ∈ H for all x, y ∈ H. 

1.2.4 LEMMA. Let G be a group and let X ⊂ G. Assume that xy = yx for all 

x, y ∈ X. Then 〈X〉 is abelian subgroup of G. 

PROOF. By hypothesis if x ∈ X then X ⊂ C(x).  

Thus 〈X〉 ⊂ C(x) for all x ∈ X.  

It follows that  x ∈ C(〈X〉), for all x ∈ X.  

Therefore X ⊂ C(〈X〉), and hence 〈X〉 ⊂ C(〈X〉). The proof is complete. 

1.3 Cosets and Normal Subgroups 

1.3.1 DEFINITION. Let H ≤ G. for a ∈ G the set Ha = {ha| h ∈ H}is called 

right coset of a. The set aH = {ah| h ∈ H}is called left coset of a. 

1.3.2 PROPOSITION. Let H ≤ G. let a, b ∈ G. Then the following hold 

(a) Ha = Hb iff ab-1 ∈ H. 

(b) If Ha ∩ Hb ≠ ∅ then Ha = Hb. 

(c) G = ∪ {Ha| a ∈ G}. 

(d) |Ha| = |Hb| = |H|. 

PROOF. (a) Let a ∈ Ha then a = hb for some h  ∈ H.  

Thus ab-1 = h ∈ H. 
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Conversely if ab-1 ∈ H, then ab-1 = h for some h ∈ H.  

Therefore a = hb. 

Now for x ∈ Ha ;  

x = h'a for h' ∈ H,  

thus  x = h'hb ∈ H.  

Hence Ha ⊂ Hb.  

The converse is similar. 

(b) Let z ∈ Ha ∩ Hb then 

z = h'a = h''b for h', h'' ∈ H.  

It follows that  a = h'-1h''b. Therefore  

ha = hh'-1h''b, so Ha ⊂ Hb.  

The reverse inclusion is similar. Hence Ha = Hb.  

(c) since a ∈ Ha then G ⊂ ∪{Ha| a  ∈ G}.  

The reverse inclusion is obvious.  

(d) The map ψ: Ha → Hb that maps ha → hb is 1-1 and onto. 

1.3.3 DEFINITION. The number of different cosets of a subgroup H of G is 

called the index of H in G. and is denoted by [G:H] or |G:H|. 

1.3.4 THEOREM. (Lagrange's) If H is a subgroup of the finite group 

G, then the order of H is a divisor of the order of G.  

PROOF. |G| = [G:H]|H|. 

1.3.5 COROLLARIES TO LAGRANGE'S THEOREM (RESTATED):  

(a) For any a ∈ G, o(a) is a divisor of |G|.  

(b) For any a ∈ G, an = e, for n = |G|.  

(c) Any group of prime order is cyclic.  

PROOF. EXERCISE. 
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1.3.6 THEOREM. Every subgroup of a cyclic group is cyclic.  

PROOF. Let H be a subgroup of a cyclic group G. Let G = 〈a〉 with o(a) = n. Let 

m be the smallest positive integer with am ∈ H. We will show that b = am is the 

generator of H by showing that every element x of H; x is a power of b.  

Now let x ∈ H, since H ⊂ G then x = ak for some integer k. Using division 

algorithm, there are two integers q, r such that  

k = qm + r with 0 ≤ r < m.  

It follows that ak = aqm + r. Then  

ar = ak - qm = ak (am)-q ∈ H. 

Then ar ∈ H. but r < m. Therefore r = 0.  

Hence x = ak = (am)q.  

Hence H is cyclic with H = 〈am〉. 
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1.4 Permutation Groups 

1.4.1 DEFINITION. Let G1 and G2 be groups, and let ϕ :G1 → G2 be a 

function. Then ϕ is said to be a group homomorphism if ϕ satisfies 

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈G1. 

If ϕ is one-to-one and onto ϕ is called isomorphism, in this case G1 is said to be 

isomorphic to G2, and this is denoted by G1 ≈ G2.  

And in the case that G1 is the same as G2; ϕ is called an automorphism of G1. 

1.4.2 PROPOSITION. Let ϕ:G1 → G2 be an isomorphism of groups.  

(a) If a has order n in G1, then ϕ(a) has order n in G2.  

(b) If G1 is abelian, then so is G2.  

(c) If G1 is cyclic, then so is G2.  

1.4.3 DEFINITION. A permutation of the set S is a one to one and onto 

function. The set of all permutations of a set S is denoted by Sym(S). The set 

of all permutations of the set {1,2,...,n} is denoted by Sn.  

1.4.4 PROPOSITION. If S is any nonempty set, then Sym(S) is a group 

under the operation of composition of functions.  

1.4.5 DEFINITION. The set of all automorphisms of a group G is called the 

automorphism group and is denoted by Aut(G) . 

1.4.6 EXERCISE. Let G be a group. Let g ∈ G. define σg: G → G by σg(x) = g1xg 

for x ∈ G. Show that σg is an automorphism of G.  

(σg is called an inner automorphism of G).  

The set of all inner automorphism of G is denoted by Inn(G). 

Notation. Usually g-1xg is written as xg because it follows the same rules of 

exponentiation. i.e., h-1(g-1xg)h = (h-1g-1)x (gh) = xgh. 
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EXERCISE. 

(a) Show that Aut(G) is a group. 

(b) Show that Inn(G) ≤ Aut(G) ≤ Sym(G). 

(c) Show that σg is the identity automorphism iff g ∈ Z(G). 

EXERCISE. Let S, T be two sets and let α : S → T be a bijection. Show that 

Sym(S) ≅ Sym(T). 

1.4.6 THEOREM. Let G cyclic group.  

(a) If G is infinite, then G ≈ Z.  

(b) If |G| = n, then G ≈ Zn.  

PROOF. EXERCISE. 

1.4.7 PROPOSITION. Let G = 〈a〉 be a cyclic group with |G| = n.  

(a) If m ∈ Z, then 〈am〉 = 〈ad〉, where d = gcd(m, n), and am has order n/d.  

(b) The element ak generates G if and only if gcd(k, n) = 1.  

(c) The subgroups of G are in one-to-one correspondence with the positive divisors of 

n. (i.e., if d | n then there is a subgroup of order d.) 

(d) If m and k are divisors of n, then 〈am〉 ⊂ 〈ak〉 if and only if k | m.  

PROOF. (a) Let x ∈ 〈ad〉, then x = (ad)k  for some integer k.  

We need to show that x is a power of am. To do this we use the fact that d = 

(m, n) that is; there are two integers s, t such that  

d = sm + tn.  

It follows that  

ad = asm + tn  

= (am)s(an)t  

= (am)s.  

It follows that  

x = (ad)k ∈ 〈am〉.  

Hence 〈ad〉 ⊂ 〈am〉.  

It follows that 〈ad〉 = 〈am〉. 
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The reverse inclusion  is easier because am ∈ 〈ad〉.  

Thus  〈am〉 ⊂ 〈ad〉. 

To see that the order of am is n/d note that  

o(am) = o(ad) = n/d. 

(b) By part (a),  ak generates G iff o(ak) = n iff 1 = g.c.d(k, n). 

Parts (c), (d) are left as an EXERCISE. 

1.4.8 COROLLARY. The number of generators of a cyclic group of order n 

is  

ϕ(n) = |{r| 1 ≤ r ≤ n-1,(r, n) = 1}|. Euler function ϕ(n). 

1.4.9 APPLICATION. Let n > 0. Then n = ∑
n

(d)ϕ
d

 

PROOF. Let G be a cyclic group of order n. write α(k) = number of elements in 

G of order k. Clearly ∑  = n.  
k

)k(α

If x ∈ G has order k then 〈x〉 is the only subgroup of G of order k. Thus if α(k) 

≠ 0 then k | n. So n = ∑
nk

)k(α . 

Now G = 〈g〉, If x, y  ∈ G, |〈x〉| = |〈y〉| = k then o(x) = o(y) = k.  

But ∃ only one subgroup of order k. So there are exactly ϕ(k) elements of order 

k, i.e., α(k) = ϕ(k). Hence n = ∑
n

)k(ϕ
k

. 
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1.4.10 DEFINITION. Let G be a group. If there exists a positive integer N 

such that aN = e for all a ∈ G , then the smallest such positive integer is called 

the exponent of G.  

1.4.11 PROPOSITION. Let G be a group, and let a, b ∈ G be elements such 

that ab = ba. If the orders of a and b are relatively prime, then o(ab)=o(a)o(b).  

1.4.12 PROPOSITION. Let G be a finite abelian group.  

(a) The exponent of G is equal to the order of any element of G of maximal order.  

(b) The group G is cyclic if and only if its exponent is equal to its order.  

PROOF. (a) EXERCISE. 

(b) Let N be the exponent of G. By (a) there is an element g ∈ G with o(g) = N 

= |G|, therefore G is cyclic.  

Conversely if G = 〈g〉 is cyclic then o(g) = |G| = N. 

1.4.13 COROLLARY. Let G be a finite group of order n.  

(a) For any a ∈ G, o(a) is a divisor of n.  

(b) For any a ∈ G, an = e.  

EXAMPLE.  (Euler's theorem) Let G be the multiplicative group of congruence 

classes modulo n. G = { k | 1 ≤ k < n, (k, n) = 1} 

The order of G is given by ϕ(n), and so by COROLLARY ( ), raising any 

congruence class to the power ϕ(n) must give the identity element.  

1.4.14 COROLLARY.  Any group of prime order is cyclic.  

PROOF. Let G be a group of order p where p is prime. Let e ≠ a ∈ G. 〈a〉 is a 

subgroup of G. By Lagrange's Theorem |〈a〉| divides the order of |G| = p.  

It follows that |〈a〉| = p. Hence 〈a〉 = G, i.e., G is cyclic. 

1.4.15 DEFINITION. Any subgroup of the symmetric group Sym(S) on a set 

S is called a permutation group or group of permutations.  
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1.4.16 THEOREM. (Cayley) Every group is isomorphic to a permutation 

group.  

PROOF. Let G be a group. For every g ∈ G we will show that multiplication by 

g is a permutaion. Let 

πg : G  G,  

be defined as follows  

πg(x) = gx.  

First πg is 1-1  

since πg(x) = πg(y) iff gx = gy iff x = y.  

Second, πg is onto,  

since for every y ∈ G, πg(g-1y) = y.  

Hence πg ∈ Sym(G). Let  

σ : G  Sym(G) be defined by  

σ(g) = πg.  

To see that σ is 1-1,  

let σ(g) = σ(h), then πg = πh.  

It follows that πg(e)= πh(e), i.e., ge = he, and thus g = h.  

To see that σ is a homeomorphism;  

note that σ(gh) = πgh = πgπh = σ(g) σ(h). 

(Note that composition of permutations here is that we apply πg first and then 

πh). This completes the proof. 
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Chapter II 

 

1. Normal Subgroups 

2. Product of Sets 

3. Homomorphism Theorems 

4. Group Action 

2.1 Normal subgroups 

2.1.1 DEFINITION.  Let H ≤ G then H is normal subgroup of G if Hg = H 

for all g ∈ G. ( we denote this by H  G). 

Example.  

(1) {e}  G, G  G. 

(2) If G is abelian then every subgroup of G is normal in G. 

2.1.2 PROPOSITION. Let H ≤ G then H  G iff Hg ⊂ H for all g ∈ G. 

PROOF. We need to show that Hg  = H for all g ∈ G.  

Since Hg ⊂ H for all g ∈ G, take g-1 for g i.e., (H)g-1 ⊂ H. Then ((H)g-1)g ⊂ Hg  

It follows that H ⊂ Hg. Hence H = Hg. 

1.56 EXERCISE.  Show that for any group G; Inn(G)  Aut(G). 

2.1.3 DEFINITION. Let H ≤ G, H is called characteristic in G if σ(H) = H 

for all automorphisms σ ∈ Aut(G). 

2.1.4 COROLLARY. If H is characteristic in G then H  G. 

2.1.5 DEFINITION. For x, y ∈ G,  

we define the commutator [x, y] = x-1y-1xy. 

2.1.6 COROLLARY. xy = yx iff [x, y] = e. 
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2.1.7 DEFINITION. The derived or the commutator subgroup of a group 

G (denoted by G') is the smallest subgroup generated by all commutators.  

i.e., G' = 〈 {[x, y] | x, y ∈ G}〉. 

2.1.8 COROLLARY. G is abelian iff G' = {e}. 

EXERCISE. Show that G' is characteristic in G. 

2.1.9 DEFINITION. Let G be a group. G(n) = the derived subgroup of G(n-1). 

By this definition we have : 

G ≥ G' ≥ G'' ≥ … ≥ G(n) ≥ … 

2.1.10 PROPOSITION. If N  G, M characteristic in N then M  G. 

PROOF. For g ∈ G, let σg ∈ Inn(G). We need to show that σg(M) = M. By 

normality of N we have: σg(N) = N. But Inn(G) ≤ Aut(G). Therefore σg is an 

automorphism of G, it follows then that σg an automorphism of N. Since M 

characteristic in N, then σg(M) = M. 

EXERCISE. Let C  G, where C is cyclic subgroup of G. Suppose that |G| < ∞. 

Show that if K ≤ C then K  G. 

1.67 EXERCISE If M, N  G, M∩N = {e} then M ≤ CG(N) ( and N ≤ CG(M)). 

2.2 Product of Sets 

Let X, Y be two sets of a group G. Write XY = { xy | x ∈ X, y ∈ Y }. We write 

Xy for X{y}, and if H ≤ G, (as we have seen before Hx is called right coset, xH 

is called left coset). 

2.2.1 THEOREM. Let H, K ≤ G then HK is a subgroup of G iff HK = KH. 

PROOF. Assume HK ≤ G, then we have H ⊂ HK, K ⊂ HK and since HK is a 

subgroup i.e., closed under multiplication then KH ⊂ HK. 

For the reverse inclusion, let u ∈ HK, then u-1 ∈ HK. Write u-1 = hk. It follows 

that u = (hk)-1 = k-1h-1 ∈ KH. Thus HK = KH. 
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Conversely, Assume that HK = KH. Let u, v ∈ HK, write u = h1k1, v = h2k2. It 

follows that uv = h1k1h2k2, but k1h2 ∈ KH = HK, therefore k1h2 = h3k3 ∈ HK. 

We say that X and Y permutes if XY = YX. 

2.2.2 PROPOSITION. Let N G, and let X ⊂ G, then NX = XN. 

PROOF. Let  u ∈ NX, then u = nx, n ∈ N, x ∈ X. write u = xx-1nx = xnx ∈ xN ⊂ 

XN. Therefore, NX ⊂ XN. Similarly, XN ⊂ NX. Hence XN = NX. 

2.2.3 COROLLARY. (a) Let H ≤ G, N  G, then HN ≤ G. 

(b) Let N  G, g ∈ G, then Ng = gN. 

EXERCISE. Prove that the number of left cosets is the number of right cosets. 

2.2.4 THEOREM. Let N  G. Define a binary operation on the set of all 

right cosets of N as follows: (Nx)(Ny) = Nxy. Then the set of all right cosets 

with this operation is a group. 

PROOF. First we will show that this operation is well defined. This means that 

if Nx = Nx', Ny = Ny' then (Nx)(Ny) = Nxy = (Nx')(Ny') = Nx'y'. Now since 

(Nx) = (Ny) then by PROPOSITION (), x'x-1 ∈ N, similarly y'y-1 ∈ N. It follows 

that: 

Nx'y' = Nx'x-1xy'y-1y = Nxy'y-1y = (xN)y'y-1y = x(Ny'y-1y) = xNy = Nxy. Thus 

this binary operation is well defined. 

The set of all cosets is closed under this operation. Associativity is clear. The 

identity element is Ne = N, since NNx = Nx. The inverse of Nx is Nx-1. 

2.2.5 DEFINITION. The group defined in the last theorem is called the 

Factor group ( or quotient group). And is denoted by G/N. 

Note. If |G| < ∞ then |G/N| = |G|/|N|. 

EXERCISE. Let H ≤ G. Let S = {Hg | g ∈ G}. Show that for the multiplication 

(Nx)(Ny) = Nxy to be defined H has to be normal in G. 
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EXAMPLE. For any group G, if N = {e} then G/N ≅ G. and if N = G then         

G/N ≅ {e}. 

EXAMPLE. For the group G = (Z, +), if N = nZ then G/N = Z/nZ = Zn (integers 

modulo n). 

2.2.6 DEFINITION. Let N  G, the map π : G  G/N defined by π(g) = Ng 

is a surjective homomorphism called the canonical ( or natural) 

homomorphism. 

2.2.7 DEFINITION.  If θ : G  K is a homomorphism, kernel of θ ( denoted 

by ker(θ)) = { g ∈ G| θ(g) = eK}. 

EXERCISE.  Show that ker(θ)  G. 

EXERCISE.  A subgroup H is normal in G iff H is a kernel of some 

homomorphism. 

2.2.8 PROPOSITION. Let N  G, then G/N is abelian iff G' ⊂ N. 

PROOF. Let π be the canonical homomorphism, π is surjective thus elements of 

G/N are of the form π(g) for some g ∈ G. Now 

G/N is abelian iff [π(g), π(h)] = e, for all g, h ∈ G. 

iff π([g, h]) = e, for all g, h ∈ G. 

iff [g, h] ∈ ker(π),for all g, h ∈ G. 

iff [g, h] ∈ N, for all g, h ∈ G. 

iff G' ⊂ N. 

2.2.9 COROLLARY. G/G' is abelian. 

In fact G' is minimal among all normal subgroups with abelian factor group. 

G/G' is called abelianization of G. 

2.2.10 PROPOSITION. Let ϕ : G  H be a homomorphism. Let N = ker(ϕ). 

Then ϕ(x) = ϕ(y) iff Nx = Ny, for all x, y ∈ G. 
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PROOF. If ϕ(x) = ϕ(y) then ϕ(xy-1) = ϕ(x)ϕ(y)-1 = e. so xy-1 ∈ N, it follows that 

Nx = Ny. Conversely, assume that Nx = Ny then y = nx for some n ∈ N. Thus 

ϕ(y) = ϕ(nx) = ϕ(n)ϕ(x) = eϕ(x) = ϕ(x). 

2.2.11 COROLLARY. If ϕ is a homomorphism then ϕ is injective iff ker(θ) = 

e. 

PROOF: EXERCISE. 

 

2.3 Homomorphism Theorems 

2.3.1 THEOREM.  (First Homomorphism Theorem).  Let ϕ: G → H be a 

surjective homomorphism with N = ker(ϕ). Then G/N ≅ H. In fact ∃! 

Surjective isomorphism θ : G/N  H such that πθ = ϕ. 

G H

θπ 

ϕ

G/N

PROOF. If θ exist then for g ∈ G we have ((g)π)θ = (g)ϕ. i.e., (Ng)θ = (g)ϕ. This 

proves that θ is unique, also shows us how to define θ. So we define  

θ : G/N  H by (Ng)θ = (g)ϕ, we need to show that θ is well-defined. i.e., if  

Nx = Ny then (Nx)θ = (Ny)θ, but by previous Proposition Nx = Ny then        

(x)ϕ = (y)ϕ, since N = ker(ϕ). To show that θ is a homomorphism we note that 

(NxNy)θ = (Nxy)θ = (xy)ϕ = (x)ϕ (y)ϕ = (Nx)θ(Ny)θ. Therefore θ is a 

homomorphism. To show that θ is 1-1 note that Nx ∈ ker(θ) iff x ∈ ker(ϕ) i.e., 

iff x ∈ N. To show that θ is onto we note that if h ∈ H then there is x ∈ G such 

that h = (x)ϕ. Thus h = (Nx)θ. This completes the proof. 

EXERCISE.  Prove that G/Z(G) ≅ Inn(G). 

Note if ϕ is not surjective then we have this version G/ker(ϕ) ≅ ϕ(G). 
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2.3.2 COROLLARY. Let N  G, H ≤ G then N∩H  H and NH/N ≅ 

H/(H∩N). 

G

e

HN

NH
PROOF. Let ϕ:H → G/N be defined by 
ϕ(h) = Nh (i.e., ϕ = π|H). We need to 
find ker(ϕ). h ∈ ker(ϕ) iff Nh = N i.e., 
h ∈ N. i.e., ker(ϕ) = N∩H. Now 
Obviously ϕ(H) = NH/N. So by the 
Theorem NH/N ≅ H/(H∩N). 

N∩H 

  

2.3.3 THEOREM. (Correspondence Theorem) Let ϕ : G → H be a surjective 

homomorphism with ker(ϕ) = N. Let S = { U| N ≤ U ≤ G}, T = { V| V ≤ H}. 

Then the following hold: 

(a) There is a bijective correspondence α : S → T given by α(U) = ϕ(U).  

And α-1(V) = { g ∈ G| ϕ(g) ∈ V}. 

(b) If V = α(U) then U  G iff V  H. 

(c) If V = α(U) then |G:U| = |H:V| 

(d) If V = α(U), U  G, V  H then G/U ≅ H/V. 

PROOF. (a) Since U ≤ G then α(U) = ϕ(U) is a subgroup of H. Also if V ≤ H 

then α-1(V) = { g ∈ G| ϕ(g) ∈ V} is a subgroup of G containing N. Let β(V) = { 

g ∈ G| ϕ(g) ∈ V}, V ≤ H. So β: T → S. 

Now if we can show that β(α(U)) = U then α, β will be bijections and inverses 

of each other. Let x ∈ β(α(U)) then ϕ(x) ∈ α(U) = ϕ(U), so ϕ(x) = ϕ(u) for some 

u ∈ U. It follows that Nx = Nu. i.e., x ∈ Nu ⊂ U, therefore x ∈ U. 

Conversely, Let u ∈ U then ϕ(u) ∈ ϕ(U) = α(U). Thus u ∈ β(α(U)). Similarly, 

we can show that α(β(V)) = V. 

(b) Let α(U) = V. Assume that U  G, let h ∈ H, therefore there is g ∈ G with 

ϕ(g) = h. Now Vh = ϕ(U)ϕ(g) = ϕ(Ug) = ϕ(U) = V. It follows that V  H. 
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(c) Let α(U) = V. Let θ:{all cosets of U in G} {set of all cosets of V in H}, 

defined by θ (Ux) = Vϕ(x). It easy to show that θ is a bijection. Thus |G:U| = 

|H:V|. 

(d) If U  G, V  H, ϕ(U) = V, the bijective map θ:G/U  H/V is an 

isomorphism, since (UxUy)θ = (Uxy)θ = ϕ(U)ϕ(xy) = ϕ(U)ϕ(x)ϕ(y) = 

ϕ(U)ϕ(x)ϕ(U)ϕ(y) = (Ux)θ(Uy)θ. The proof is complete. 

2.3.4 COROLLARY. Let N  G then every subgroup of G/N has the form 

H/N for some subgroup H with N ≤ H ≤ G. Moreover H/N  G/N iff H  G 

and (G/N)/(H/N) ≅ G/H. 

PROOF. EXERCISE. 

 

2.4 Group Action 

2.4.1 DEFINITION.  Given a set Ω and a group assume we have a rule 

which assigns an element of Ω for each α ∈ Ω, g ∈ G. we write α•g ∈ Ω. So 

we have a function f: Ω × G  Ω, f(α, g) = α•g ∈ Ω, such that 

1. (α•g)•h = α•(gh) for all α ∈ Ω and g, h ∈ G. 

2. α•e = α, for all α ∈ Ω. 

We say that G acts on Ω (• is the action). 

EXAMPLE. (1) Let G ≤ sym(Ω) and let α•g = (α)g for all α ∈ Ω. 

(2) Let G be a group, Ω = G, define x•g = xg. (this is called the regular action, 

or right multiplication action). 

Note to define an action with left multiplication x•g = g-1x. 

(3) Let G be a group, Ω = G, define x•g = xg = g-1xg (called conjugation action). 

(4) Let G be a group, Ω = {H| H ≤ G}, define H•g = Hg (called conjugation 

action on subgroups). 
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(5) Let G be a group, Ω = {Hg| g ≤ G}, define Hg• x = Hgx. 

EXERCISE. Show that these are actions. 

We use these actions for two reasons  

(1) produce normal subgroups  

(2) count things. 

2.4.2 THEOREM. Let G act on Ω. For any g∈ G define the map πg: Ω  Ω 

as follows (α)πg = α•g. Then πg ∈ sym(Ω). Furthermore the map θ: G  

sym(Ω) defined by θ(g) = πg is a homomorphism. 

PROOF. Let g, h ∈ G, α ∈ Ω. ((α)πg)πh = (α•g)πh = (α•g)h = (α)•(gh) = (α)πgh. So 

πgπh = πgh. 

Now πe is the identity permutation, since (α)πe = α•e = α. 

Thus  πgπg-1 = πe therefore πg is 1-1 and onto. Hence πg ∈ Sym(Ω). 

To see that θ is a homomorphism we have θ(gh) = πgh = πgπh = θ(g)θ(h). 

Note ker(θ) = { g ∈ G | α•g = α for all α ∈ Ω}. Is called the kernel of the 

action. 

2.4.3 THEOREM. (n!) Let H ≤ G and assume |G:H| = n < ∞. Then there 

is a normal subgroup N ≤ H and |G:N| divides n!. 

PROOF. Let Ω = {Hx | x ∈ G} then | Ω| = n . G acts on Ω by right 

multiplication. Let N = kernel of the action then N  G. To see that N ≤ H, for 

x ∈ N then x fixes H i.e., Hx = H, therefore x ∈ H. Hence N ≤ H. 

Now, G/N = G/ker(θ) ≅ θ(G) ≤ sym(Ω). Therefore by Lagrange's Theorem 

|G/N| divides | sym(Ω)| = n!. 

EXERCISE. Prove that the ker(θ) = ∩{Hg| g ∈ G}.  

EXERCISE. Prove that if |G:H| = 2 then H  G. 
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EXERCISE. Prove that if |G:H| = p with p is the smallest prime dividing |G| 

then H  G. 

EXERCISE. Prove that if H ≤ G with |G:H| < ∞ then there is N  G with 

|G:N| < ∞. 

2.4.4 DEFINITION. Let G be a group acting on Ω, let α ∈ Ω then the orbit 

of α under the given action is Oα = { α•g | g ∈ G}. 

2.4.5 THEOREM. Let G acts on Ω, let Oα be the orbit of α, α ∈ Ω. Then the 

following hold: 

(1) If β ∈ Oα then β•g ∈ Oα for all g ∈ G. 

(2) If β, γ ∈Oα then γ = β•g for some g ∈ G. 

(3) If β ∈ Oα then Oα = Oβ. 

(4) If Oα∩Oβ ≠ ∅ then Oα = Oβ. 

PROOF. EXERCISE. 

2.4.6 COROLLARY. Ω is partitioned by the different orbits. 

PROOF. EXERCISE. 

EXAMPLE.(1) Let H ≤ G, let H acts on G by right multiplication. i.e., g•h = gh 

then the orbit Og = gH. 

(2) If G acts on G by conjugation then for x ∈ G; Ox = is the conjugacy class of 

x = clG(x) = { y ∈ G | y = xg  for some g ∈ G}. 

EXERCISE.  Show that if | clG(x)| = 1 iff  x ∈ Z(G). 

2.4.7 DEFINITION.  An action is called transitive if there is only one 

orbit. 

EXAMPLE. The regular action is transitive, since for every pair of elements x, y  

there is g ∈ G such that xg = y. 

Note that elements of the same conjugacy class have the same order. Elements 

of order 2 are called involutions. 
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2.4.8 DEFINITION.  Let G act on Ω, let α ∈ Ω. The set Gα = { g ∈ G| α•g 

= α} is called the stabilizer of α. 

EXERCISE. Show that Gα ≤ G. 

2.4.9 THEOREM. (Fundamental Counting Principle) Let G act on Ω, let 

Oα be an orbit for α ∈ Ω. Then there is a bijection between {Gαx | x ∈ G} and 

Oα (i.e., |Oα| = |G:Gα|). 

PROOF. Define the mapping  

ϕ : {Gαx | x ∈ G} → Oα as follows 

ϕ(Gαx) = α•x. 

We need to show that ϕ is well-defined, i.e., if Gαx = Gαy then αx = α•y. 

But if Gαx = Gαy then y ∈ Gαx i.e., y = gx for some g ∈ Gα (i.e., g fixes α). 

Therefore α•y = α•gx = (α•g)•x = α•x. To show that ϕ is 1-1, let α•x = α•y 

then α = αxy-1therefore xy-1 ∈ Gα hence x ∈ Gαy, thus Gαx = Gαy. To show that 

ϕ is onto, let β ∈ Oα we know that there is g ∈ G with β = α•x. So ϕ(Gαg) = 

α•g = β. Hence ϕ is a bijection. 

2.4.10 COROLLARY.  

(1) |Oα| = |G:Gα|. 

(2) If |G| < ∞ then |Oα| = |G|/|Gα|. 

(3) Let x ∈ G, then |clG(x)| = |G:CG(x)|. 

(4) If |G| < ∞ and G has only two conjugacy classes then |G| = 2. 

PROOF. EXERCISE. 

2.4.11 DEFINITION. Let G act on the set of subgroups of G by conjugation. 

For H ≤ G, GH = NG(H). is called the normalizer of H in G. 

EXERCISE. Show that  

(1) H ≤ NG(H) 

(2) Show that NG(H) is the largest subgroup in which H  NG(H). 
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2.4.12 THEOREM. Let H, K ≤ G, |H|, |K| < ∞ then |HK| = 

|H||K|/|H∩K|. 

 

 

 

G

HK

KH

|HK:K|

|H:H∩K|

K∩H

PROOF. HK = ∪{Hk| k ∈ K}, thus |HK| = |H||{Hk| k ∈ K}|. Let K act on Ω = 

{Hg | g ∈ G} therefore the set {Hk| k ∈ K} forms one orbit of H under the 

action. Therefore, by The Fundamental Counting Principle, |{Hk| k ∈ K}| = 

|K:KH|, where KH is the stabilizer of H in K. Now given x ∈ K, we have x ∈ 

KH iff Hx = H iff x ∈ H. In other words KH = K∩H. Therefore |HK| = 

|H||K:K∩H| = |H||K|/|H∩K|. 

2.4.13 DEFINITION. Let p be a prime number, a finite p-group is a group G 

with |G| = pn for some integer n ≥ 0. 

2.4.14 PROPOSITION. Let P be a p-group and assume that P acts on Ω. If p 

does not divide |Ω| then P fixes some element of Ω. 

PROOF. Write |Ω| = |O1| + |O2| + …+ |Ok|, where Oi are the different 

orbits. Thus ∃ an orbit Oi such that p does not divide |Oi|. By Fundamental 

Counting Principle, |Oi| divides |P|. Therefore |Oi| = 1. Thus there is α ∈ 

Ω such that Oα = {α}, and hence, α•g = α for all g ∈ P. 
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2.4.15 THEOREM. Let P be a p-group and N  P, assume that |N| > 1. 

Then |N∩Z(P)| > 1. 

PROOF. Let P act by conjugation on Ω = N\{e}, then |Ω| = |N| - 1. But |N| = 

pα  for some α > 0. So |Ω| = pα - 1, which is not divisible by p. therefore there 

is some element x ∈ N fixed under P, i.e., xg = x for all g ∈ G. Thus x ∈ Z(P), it 

follows that x ∈ N∩Z(P). 

2.4.16 COROLLARY.  Let P be a p-group, |P| > 1. Then |Z(P)| > 1. 

PROOF. EXERCISE. 

2.4.17 DEFINITION. A group G is called simple if G has no proper normal 

subgroups. 

2.4.18 COROLLARY. If |G| = pα, p prime, G is simple then α = 1. 

PROOF. EXERCISE. 
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Chapter III 

1. Sylow Theory 
2. Nilpotent Groups 
3. Direct Product 
4. Permutation Groups 

3.1 Sylow Theory 

3.1.1 DEFINITION.  Let |G| = n = pαk  where p does not divide k. pα is 

called the p-part of n. A subgroup H ≤ G is called a sylow p-subgroup if 

|H| = pα. The set of all sylow p-subgroups of G is denoted by sylp(G). 

Remark: (1) If H ≤ G, H ∈ sylp(G) iff |H| is a power of p and p does not 

divide |G:H|. 

(2) If H ∈ sylp(G), g ∈ G then Hg ∈ sylp(G). 

3.1.2 PROPOSITION. If p is a prime number, then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
p

 ≡ 0 (mod p), for all 1 ≤ i ≤ p. 

3.1.3 COROLLARY. For every integer x, (x + 1)p ≡ (xp + 1) mod p. 

3.1.4 PROPOSITION.  ≡ k (mod p), for prime p. ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p
kp
α
α

3.1.5 THEOREM. (Sylow Existence) For a prime p, if G is finite then 

sylp(G) ≠ ∅. 

PROOF. Let n = |G| = pαk , p does not divide k. Let Ω = {X ⊂ G| |X| = pα}. 

Then |Ω| =  ≡ k (mod p) ≠ 0 mod p. Let G act on Ω by right 

multiplication, i.e., X•g = Xg, for all g ∈ G. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p
kp
α
α

So, there must be an orbit OX  with |OX| is not congruent to 0 (mod p). Then 

by The Fundamental Counting Principle, |OX| = |G:GX|, and p does not 



Prof. Mohammed El-Atrash   28 

divide |G:GX|. Therefore p does not divide |G|/|GX|, it follows that pα | 

|GX|. Therefore pα ≤ |GX|. To get the reverse inequality we know that Xh = X 

for h ∈ GX. Fix x ∈ X, then xh ∈ X for all h ∈ GX. It follows that xGX ⊂ X. Thus 

|GX| ≤ |X|. Hence |GX| = |X|, GX ∈ sylp(G). 

3.1.6 THEOREM. (Sylow Conjugacy and Development Theorem). Let G be 

a finite group. Let P ≤ G be a p-group and let S ∈ sylp(G). Then P ≤ Sx for 

some x ∈ G. 

PROOF: Let Ω = {Sx| x ∈ G} and let P act on Ω by right multiplication. Then 

we have |Ω| = |G:S| which is not divisible by p, since S is a sylow p-

subgroup. Therefore there is an orbit Oα with p does not divide |Oα|. But 

since P is a p-group then all orbits must divide |P|. It follows that there is an 

orbit with |Oα| = 1. So P stabilizes Sx for some x ∈ G, i.e.,if y ∈ P then Sx = 

Sxy and hence x-1Sx = x-1Sxy i.e., Sx = Sxy. Therefore y ∈ Sx i.e., P ⊂ Sx. 

3.1.7 COROLLARY. (Sylow conjugacy Theorem) Let P, Q be two sylow p-

group, for a prime number p. Then there is an element x ∈ G such that Px = 

Q. 

PROOF. Take S in the Theorem to be Q. then Q ≤ Px. Now since both have the 

same cardinality |Q| = |Px|, then Q = Px. 

3.1.8 COROLLARY. (Sylow development Theorem) Let P be a p-group, for a 

prime number p. Then there is a sylow p-group Q such that P ≤ Q. 

PROOF. Take Sx in the Theorem to be Q. then P ≤ Q. 

3.1.9 COROLLARY. Let G be a finite group, let P ∈ sylp(G).  

Then | sylp(G)| = |G:NG(P)|. In particular | sylp(G)| divides |G:P|. 

PROOF: EXERCISE. 
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3.1.10 COROLLARY. Let S ∈ sylp(G). Then the following are equivalent: 

(i) S  G. 

(ii) S is the unique sylow p-subgroup of G. 

(iii) Every p-subgroup of G is contained in S. 

(iv) S is characteristic in G. 

PROOF: EXERCISE. 

Write np= | sylp(G)|, now if | G| = pαm. Then np | m. 

3.1.11 THEOREM. (Sylow Counting) Let G be a finite group. Then np ≡ 1 

mod p. 

PROOF: Let P ∈ sylp(G). Let P act by conjugation on Ω = sylp(G). Then {P} 

forms one orbit by itself. Now we claim that every other orbit has size strictly 

bigger than one. To see this, let S = Sx, x ∈ P then x ∈ NG(S), So P ≤ NG(S). 

Since P ∈ sylp(G) then sylp(NG(S)). S  NG(S) implies that S is the unique 

sylow p-subgroup of NG(S). Therefore P = S. Therefore np = 1 + |O1| + |O2| + 

… |Ok|. where p divides |Oi| since |Oi| divides |P|. Hence np ≡ 1 mod p. 

3.1.12 COROLLARY. Let Q ∈ sylp(G), P any p-subgroup of G. Suppose that   

P ≤ NG(Q) then P ≤ Q. 

PROOF. EXERCISE. 

3.1.13 COROLLARY. If |G| = 72 then G is not simple. 

PROOF. 72 = 2332. We will compute n3(G). Since n3 must divide 23, then n3 ∈ {1, 

2, 4, 8}. Since n3 ≡ 1 mod 3, then n3 ∈ {1, 4}. 

If n3 = 1 then G is not simple since it contains a normal subgroup of order 9. If 

n3 = 4 then |G:N(S)| = 4 for some S ∈ syl3(G). Therefore by (n!) Theorem 

there is a normal subgroup N ⊂ N(S). If |N| > 1 then G is not simple. So, 

assume that |N| = 1, then |G| = |G/N| | 4!, but 72 does not divide 24. Thus 

n3 ≠ 4. Therefore G is not simple. 
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3.1.14 COROLLARY. If |G| = pq where p, q are primes with p > q, then  

(a) G has a normal sylow p-subgroup 

(b) G is cyclic unless q | (p-1). 

PROOF: np | q so np = 1 or np = q. But if np = q then q ≡ 1(mod p), i.e., q ≥ p + 1 

which contradicts the hypothesis that q < p. Thus np = 1. 

Now assume that q does not divide p - 1. i.e., p is not congruent to 1 mod q. nq 

= 1mod q, therefore nq = 1. Let P ∈ sylp(G), Q ∈ sylq(G). Then P  G, Q  G, 

P∩Q = {e}. Therefore elements of P commutes with elements of Q. Let x ∈ P, y 

∈ Q with x ≠ e ≠ y therefore xy = yx,  therefore o(xy) = pq, Thus G = 〈xy〉. 

3.1.15 COROLLARY. Let |G| = p2q, q ≠ p be primes. Then G has a normal 

subgroup. 

PROOF: Assume np > 1, nq > 1 then np | q and therefore np = q. it follows that q 

≡ 1 mod p and this gives that q = 1 + kp. Hence nq = p or nq = p2. 

If nq = p then p ≡ 1 mod q, therefore p > q, contradicting the fact that q > p. If 

nq = p2, then the number of elements of order q is p2(q-1), so the rest of the 

elements is p2q - p2(q -1) = p2, but this is only the number of elements in one 

sylow p-subgroup, i.e., np = 1 contradicting our assumption that np > 1. 

Therefore either np = 1 or nq = 1. 

3.1.16 COROLLARY. Let |G| = p3q, p ≠ q primes. Then G has a normal 

sylow subgroup except when |G| = 24. 

PROOF: EXERCISE. 

3.1.17 THEOREM. (Burnside) If |G| = pαqβ, where p, q are primes, then α, 

β ≥ 1, |G| is not simple. 

PROOF: Omitted. 

3.1.18 THEOREM. (Frattini Argument) Let N  G, with |N| < ∞. Let P 

∈ sylp(N). Then G = NG(P)N. 
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PROOF: Let g ∈ G. Then Pg ⊂ Ng = N. But |Pg| = |P|. Therefore Pg ∈ sylp(N). 

It follows by Sylow Conjugacy Theorem that Pg, P are conjugate in N. Thus 

there is an element n ∈ N such that Pg = Pn. It follows that gn-1 ∈ NG(P). Hence 

g ∈ NG(P)N, i.e., G = NG(P)N. 

3.1.19 DEFINITION. Let ϕ(G) = ∩{ H ≤ G| H is maximal subgroup in G}. 

ϕ(G) is called Frattini subgroup. 

3.1.20 PROPOSITION. Let |G| < ∞ and let H ≤ G. If ϕ(G)H = G then H = 

G. 

PROOF: EXERCISE. 

3.1.21 THEOREM. If |G| < ∞ then every sylow subgroup of ϕ(G) is 

normal. 

PROOF: Let F = ϕ(G) and let P ∈ sylp(F). we know that F  G (in fact F is 

characteristic in G). By Frattini argument NG(P)F = G, and then by the 

proposition NG(P) = G, therefore P  G. 

 

3.2 Nilpotent Groups 

Let P be a finite p-group, |P| > 1 the P has a non-trivial center, let Z1 = Z(P), 

Z1 is characteristic in P. If P is not abelian then Z(P) ≠ P, and hence P/Z(P) is 

again a p-group and then we do the same, i.e., we find a subgroup Z2 with 

Z2/Z1 = Z(P/Z1). Therefore we have the following series of subgroups  

{e} = Z0 ≤ Z1 ≤ Z2 ≤ …≤ Zk = P. 

with each Zi is called ith center, and (Zi + 1)/Zi = Z(P/ Zi). 

Note. In p-groups we always get Zk = P for some k. But in general it might not 

be true. 
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3.2.1 DEFINITION. A set of subgroups G0, G1, …, Gk in G is a central 

series if   {e} = G0 ⊂ G1 ⊂ …⊂ Gk = G 

where each Gi  G, and (Gi + 1)/Gi ⊂ Z(G/ Gi), for 0 ≤ i ≤ k, k is finite. 

3.2.2 COROLLARY. A finite p-group has a central series. 

3.2.3 DEFINITION.  A group is called nilpotent if it has a central series. 

3.2.4 COROLLARY. A finite p-group is nilpotent. 

REMARK.  Every abelian group is nilpotent. 

3.2.5 PROPOSITION. If 1 < |G| < ∞ and all its sylow subgroups are 

normal then |Z(G)| > 1. 

PROOF. If p | |G|, p is prime. Let P ∈ sylp(G). Let Z = Z(P). we know that |Z| 

> 1. We claim that Z ⊂ Z(G). To prove this claim, let C = CG(Z), we will show 

that C = G, by showing that |G:C| = 1. So assume |G:C| > 1. Let q be a prime 

number with q | |G:C|. Let Q ∈ sylq(G). Since q | |G:C| we have Q ≠ C. If q 

= p then P = Q and because np = 1, Z = Z(P) thus P ⊂ C(Z) = C which is a 

contradiction since P = Q ⊄ C. Thus q ≠ p, and therefore P ∩ Q = {e}, P  G, Q 

 G, thus Q ⊂ C(P) ⊂ C another contradiction. 

3.2.6 THEOREM. Let G be a finite group. Then the following are 

equivalent: 

(i) G is nilpotent. 

(ii) If H < G then NG(H) > H. (normalizers grow) 

(iii) If M is maximal in G then M  G. 

(iv) Each sylow of G is normal in G { ∃! Sylow subgroups} 

(v) If N  G with N ≠ G then |Z(G/N)| > 1. { if N = {e} then |Z(G)| > 1}. 

PROOF. (i) → (ii) Given H < G, we have a central series 

{e} = G0 ≤ G1 ≤ G2 ≤ … ≤ Gk = G. 

Choose Gi ⊂ H such that Gi+ 1 ⊄ H. 
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Now H/Gi ⊂ G/Gi , G(i + 1)/Gi ⊂ Z(G/Gi) ⊂ N(H/Gi) = N/Gi for some N ≤ G. 

and H/Gi  N/Gi then by correspondence Theorem H  N. Therefore Gi+1 ⊂ 

N ⊂ NG(H) > H. 

(ii) → (iii) Let M be maximal in G, then M < G and by (ii) NG(M) > M, thus 

NG(M) = G by maximality. Hence M  G. 

(iii) → (iv) Let P ∈ sylp(G) for some p, p prime. Let N = NG(P). If N < G then by 

finiteness, ∃ a maximal subgroup M with N ⊂ M then M  G. Note P ⊂ M 

thus P ∈ sylp(M), by Frattini Argument G = NG(P)M = NM = M, this of course 

a contradiction. So N = G, so P  G. 

(iv) → (v) Given N  G, to show that Z(G/N) > {e}, it suffices by the 

Proposition to show that each sylow of G/N is normal. We will use property 

(iv) to prove the same condition on G/N. 

Let p be prime, let P ∈ sylp(G). Look at (PN)/N ⊂ G/N. P  G by (iv), N  G 

implies that PN  G. Therefore PN/N  G/N.  

Now we will show that PN/N ∈ sylp(G/N). | PN/N| is a p-power, |G:PN| is 

not divisible by p. Therefore G/N has a normal sylow p-subgroup. 

(v) → (i) Let G0= {e}, by induction define Gi, i > 0, by the formula Gi/Gi-1 = 

Z(G/Gi-1), not all Gi  G. If Gi-1 < G then by (v) Z(G/Gi-1) > {e}. i.e., Gi/Gi-1 > 

{e} implies that Gi > Gi-1, and by finiteness of G we have Gk = G for some k. 

Thus G is nilpotent. 

3.2.7 COROLLARY. Let P ≠ {e} be a finite p-group. Let M be any maximal 

subgroup of P. Then M  P and P/M is cyclic of order p. 

PROOF: We have M  P since P is nilpotent. Subgroup of P/M are in bijection 

correspondence with S = {U| M ≤ U ≤ P}. Maximality implies that S = {M, P}. 

Thus P/M has just two subgroups; itself and the identity. Therefore P/M is 

cyclic of prime order p. 

3.2.8 COROLLARY. Last corollary states that if M is maximal than |P:M| 

= p. 
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3.2.9 COROLLARY.If |P| = pα and 0 ≤ β ≤ α, then ∃ subgroup Q ⊂ P 

with |Q| = pβ. 

PROOF. EXERCISE. 

3.2.10 COROLLARY. If |G| < ∞, and pβ | |G|, where p is prime, then 

there is a subgroup Q ⊂ G with |Q| = pβ. 

PROOF: EXERCISE. 

EXERCISE. If |G| < ∞, show that ϕ(G) is nilpotent. 

EXERCISE. Let G be a finite group. 

(i) If G/ϕ(G) is nilpotent show that G is nilpotent. 

(ii) If G is nolpotent, N  G, show that G/N is nilpotent. 

 

3.3 Direct Product 

Give two groups U, V. Let G = {(u, v)| u ∈ U, v ∈ V}, i.e., G = U × V. Define 

the multiplication on G component wise by  

(u, v)(u', v') = (uu', vv'). 

Identity of G is (e1, e2), where e1 , e2 is the identity of U, V respectively. And 

inverse of (u, v)-1 is (u-1, v-1). G is a group called the external direct product of 

U, V. Of course |G| = |U||V|. 

Let U = {(u, e2)| u ∈ U}, V = {( e1, v)| v ∈ V}. Easy to see that U, V are 

subgroups of G. In fact U, V  G, and U ≅ U, V ≅ V. 

Similarly, if U1, U2, … Un are n groups. Then the external direct product  

G = {(u1, u2, … un)| ui ∈ Ui, i = 1, 2, …, n}.  

This product is denoted by U
n

i 1=
∏ i. or U

n

1=i
∑ i. 

Let Ui = {(e1, e2, …, ui, …, en)| ui ∈ Ui,}, i = 1, 2, …, n. 

EXERCISE. (i) Show that Ui  G for i = 1, 2, …, n. 
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(ii) Show that Ui ≅ Ui for i = 1, 2, …, n. 

3.3.1 THEOREM. Let U1, U2, … Un be finite p-groups (Possibly for 

different primes). Let G = U
n

i 1=
∏ i. Then G is nilpotent. 

PROOF: We may assume that Ui  is a pi -group with pi ≠ pj, for i ≠ j.  

Note |G| = |U∏
=

n

i 1
i|. Thus |Ui| is the order of a sylow pi-subgroup of G. But 

Ui has the order equal to Ui and so Ui ∈ sylp(G). Therefore for each prime pi | 

|G| a sylow pi -subgroup is normal in G. Hence G is nilpotent. 

3.3.2 DEFINITION. Given a group G, suppose M1, M2, …, Mn  G. 

Assume G = M1M2 … Mn. Assume also that each g ∈ G the decomposition g = 

x1  x2  … xn with xi ∈ Mi is unique. Then we say that G is the internal direct 

product of Mi ., i = 1, 2, 3, …, n. and this product is denoted by M
n

n

i 1=
∏• i or 

M
i 1=
∑• i if the notation is addition. 

3.3.3 THEOREM. Let G = M
n

i 1=
∏• i, then 

(i) ( M
n

ji≠
∏ i ∩) Mj= {e}. 

(ii) Mi ⊂ CG(Mj), if i ≠ j. 

(iii) G ≅ M
n

i 1=
∏ i. 

PROOF: (i) Let g ∈ M
n

ji≠
∏ i ∩ Mj, then g = x1 x2 … xn, xj = ei. and since g ∈ Mi 

thus g = ee …g…e. Therefore g = xi = e. by uniqueness of the decomposition. 

(ii) By (i) Mi ∩ Mj = {e} for i ≠ j. Normality of Mi implies that Mi ⊂ C(Mj). 

(iii) Let θ: M
n

i 1=
∏ i → G, defined by θ((x1, x2, … , xn)) = x1 x2 … xn. Clearly θ is an 

isomorphism. 
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EXAMPLE. Let G = Z30. Let M1 = {0, 15}, M2 = {0, 10, 20}, M3 = {0, 6, 12, 18, 24}. 

Then by the Theorem, we have G = M1⊕M2⊕M3, Since M1⊕M2∩M3 = {e}, 

M1∩M2 = {e}. 

3.3.4 COROLLARY. If G is the direct product of M, N. Then G/N ≅ M. 

PROOF: EXERCISE. 

EXERCISE. If G is the direct product M × N and M × L, then N ≅ L. 

(Cancelation). 

3.3.5 THEOREM. Let M1, M2, … Mn  G. Assume that ( M
1

1

−

=
∏

r

i
i ∩) Mr = 

{e}. Then the product G = M1M2 … Mn is direct. 

PROOF: Suppose that x1 x2 … xn = y1 y2 … yn, where xi, yi ∈ Mi, i = 1, 2, …, n. To 

show that xi = yi for all i = 1, 2, …, n. Assume that xr ≠ yr for some r, choose r 

as larg as possible so that xi = yi for i > r. Use cancelation to get x1 x2 … xr = y1 

y2 … yr . Let u = x1 x2 … xr-1, v = y1 y2 … yr-1 then uxr = vyr. Now v-1u = yrxr-1  ∈ 

Mr, u, v ∈ M
1−r 1−r 1−r

n

n

1=
∏

i
i thus v-1u ∈ M

1=
∏

i
i. Therefore yrxr-1 ∈ ( M

1=
∏

i
i∩) Mr = {e}. 

Hence xr = yr and this is a contradiction. 

EXERCISE. Let G be a finite group. G = M
n

i 1=
∏ i, Mi  G. Show that |G| ≤ 

|U
i 1=
∏ i| with equality holds iff G is the direct product . 

3.3.6 COROLLARY. Assume that G is a finite nilpotent group. Let P1, P2, 

…, Pn ∈ sylpi(G) for different primes pi. then G is the direct product G = 

P
i 1=
∏ i. 
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PROOF: we know that Pi  G, |G| = |P
n

i 1=
∏ i| also | P

n

i 1=
∏ i| is divisible by 

|Pi|, thus G = P
n

i 1=
∏ i and this product is direct. 

EXERCISE. Prove that every finite group G is nilpotent iff G is the (direct) 

product of p-groups. 

EXERCISE. Prove that every p-group G is isomorphic to a (direct) product of 

cyclic groups. 

3.3.7 THEOREM. (Fundamental Theorem of Finite Abelian Groups). If 

G is finite abelian group then G is isomorphic to the direct product of cyclic 

groups of prime power order i.e., G ≅ C
ν

ι 1=
Π i, |Ci| = pi

αi, αi ≥ 0.  

3.4 Permutation groups 

3.4.1 DEFINITION. The set of all permutations of a set S is denoted by 

Sym(S).  

The set of all permutations of the set {1,2,...,n} is denoted by Sn.  

3.4.2 PROPOSITION. If S is any nonempty set, then Sym(S) is a group 

under the operation of composition of functions.  

3.4.3 DEFINITION. A k-cycle (or a cycle of length k) is a permutation π = 

(a1 a2 … ak) where π(ai) = ai+1, for 1 ≤ i < k, and π(ak) = a1. π fixes every other 

element of S. 

EXERCISE. Show that the order of a cycle of length k is k. 

EXERCISE. Show that the order of disjoint cycles is the least common multiple 

of their lengths. 

EXERCISE. If C = (a1, a2, …, ak), π ∈ Sn. Prove that  

π (a1, a2, …, ak)π-1 = (π(a1), π(a2), …, π(ak)). 
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EXERCISE. Let x, y ∈ Sn. Show that x, y are conjugate iff x, y, have the same 

cycle structure. 

3.4.4 DEFINITION.  A transposition is a cycle of length 2. 

EXERCISE. Prove that a k-cycle is the product of k-1 transpositions 

3.4.5 THEOREM. Every permutation in Sn can be written as a product of 

disjoint cycles. The cycles that appear in the product are unique.  

3.4.6 PROPOSITION. If a permutation in Sn is written as a product of 

disjoint cycles, then its order is the least common multiple of the lengths of its 

cycles.  

3.4.7 DEFINITION. Any subgroup of the symmetric group Sym(S) on a set 

S is called a permutation group or group of permutations.  

3.4.8 THEOREM. (Cayley) Every group is isomorphic to a permutation 

group.  

3.4.9 DEFINITION. Let n > 2 be an integer. The group of rigid motions of a 

regular n-gon is called the nth dihedral group, denoted by Dn.  

We can describe the nth dihedral group as  

Dn  = { ak, akb | 0 ≤ k < n }, 

subject to the relations o(a) = n, o(b) = 2, and ba = a-1b.  

3.4.10 THEOREM. If a permutation is written as a product of transpositions 

in two ways, then the number of transpositions is either even in both cases or 

odd in both cases.  

3.4.11 DEFINITION. A permutation is called even if it can be written as a 

product of an even number of transpositions, and odd if it can be written as a 

product of an odd number of transpositions.  
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3.4.12 PROPOSITION. The set of all even permutations of Sn is a subgroup 

of Sn.  

3.4.13 DEFINITION.  The set of all even permutations of Sn is called the 

alternating group on n elements, and will be denoted by An. 

EXERCISE. Show that |Sn:An| = 2. 

3.4.14 THEOREM. Let G be a group, Ω be a finite set. Assume that there is g 

∈ G that acts " oddly" on Ω. Then ∃ N  G with |G:N| = 2. 

PROOF: The action gives a homeomorphism θ: G → Sym(Ω). 

θ(g) is an odd permutation. 

Therefore, θ(G) ∩ Alt(Ω) < θ(G), since θ(G) has an odd permutation. Then we 

have | θ(G):θ(G) ∩ Alt(Ω)| = 2. θ is surjective, therefore there is a normal 

subgroup N = θ-1(θ(G) ∩ Alt(Ω)) of index 2. 

COROLLARY.  Let G be simple, with |G| > 2. Let H ≤ G such that |G:H| = n > 1. 

Then |G| | n!/2. 

3.4.15 COROLLARY. Let |G| = 2n with n odd. Then G has a normal 

subgroup of order n. 

PROOF: Let x ∈ G with o(x) = 2. We claim that x acts oddly on G. To prove 

this, let π be the permutation of G induced by x. Since x2 = e, we have π2 = e. 

in fact π fixes no element of G, since If π(g) = g then gx = g and this would 

imply that x = e , this is a contradiction. The cycle structure of π consists just 

of 2-cycles. Thus π is n different cycles, then π is an odd permutation. So N 

exist. 

3.4.16 THEOREM. A5 is simple. 

PROOF: If N  G, assume N < A5. We can show that N = {e}. Choose N as large 

as possible. If 3| |N| then if P ∈ syl3(N) we have P ∈ syl3(A5). Thus by sylow 

conjugacy N contains all syl3(G) subgroups of A5 and therfore it contains all 
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elements of order 3 in A5. Now if x ∈ A5, o(x) = 3, then the cycle structure of x 

is 123. But we have 20 elements of those 3-cycles, it follows that |N| ≥ 21, 

hence |N| = 30. And similarly if 5| |N| we get |N| = 30. It follows that in 

either case |N| = 30. This would imply that |N| > 1 + 20 + 24 > 30, which is 

a contradiction. If |N| = 2, or 4, then |G/N| = 30 or 15. But G/N is simple 

by maximality of N, however there is no such group. Thus N = {e}. 

3.4.17 THEOREM. An is simple for all n ≥ 5. 

PROOF: Omitted. 

EXERCISE. Show that if |G| = 180 then G is not simple. 

EXERCISE. Show that if |G| = 396 then G is not simple. 
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3.5 Operator Groups 

3.5.1 DEFINITION. Given a set S ( may be empty), and given a group G  

(may be infinite). Assume that for every s ∈ S and for every g ∈ G there is an 

element gs ∈ G that satisfies (gh)s = gshs. Then G is called a group with 

operator set S. 

Note. Each s ∈ S induces an indomorphism (a homomorphism of G into G). 

EXAMPLE. Let S = G, action is conjugation. 

EXAMPLE. If V is a vector space over a field F. V is a group with operator set F. 

3.5.2 DEFINITION.  H is called an s-subgroup of a group G with operator 

set S (denoted by H ≤s G) if H ≤ G and hs ∈ H for all h ∈ H. 

3.5.3 DEFINITION.  H is called s-normal in G (denoted by H s G) if H  

G and H ≤s G. 

3.5.4 LEMMA. If G is a group with operator set S, H s G, then G/H is a 

group with operator set S. 

PROOF. Define the action of S on G/H by (Hg)s = H gs. We need to show that 

(Hx)s = (Hy)s if Hx = Hy. Now x ∈ H y implies that x = hy. Then x s = (hy)s = 

hsys ∈ Hys . Therefore (Hx)s = (Hy)s.  

3.5.5 DEFINITION. A homomorphism θ : G1 → G2 is called an s-

homomorphism of groups G1, G2 with operator set S if θ(gs) = θ(g)s. If θ is 

onto and 1-1 then θ is called an s-isomorphism. 

3.5.6 LEMMA. If θ : G1 → G2 is a surjective s-homomorphism then 

G1/ker(θ) ≅s G2 ( G1 is s-isomorphic to G2 ). 

3.5.7 DEFINITION. A group G is called s-simple if the only s-normal 

subgroups of G are {e}, G. 
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3.5.8 DEFINITION.  The series {G0, G1, G2, …, Gn} is called s-composition 

series for G if {e} = G0 s G1 s … s Gn = G, with Gi +1/Gi are s-simple, i = 

0, 1, …, n-1. 

3.5.9 LEMMA.  Let G be a group that have an s-composition series. Let N 

s G then N has an s-composition series. 

PROOF: Let {e} = G0 s G1 s … s Gn = G be an s-composition series for G, let 

Ni = N ∩ Gi, Then {e} = N0 s N1 s … s Nn = N, note that Ni+1  Gi+1, since 

N  G. Also Gi  Gi+1. Thus Gi  GiNi+1  Gi+1, it follows that either GiNi+1 = 

Gi or GiNi+1 = Gi+1. 

Case 1.  

Ni+1 ⊂ GiNi+1 = Gi, So Ni+1 ⊂ Gi, Thus Ni = N ∩ Gi ⊇ N∩Ni+1 = Ni+1. 

Case 2. 

GiNi+1 = Gi+1 therefore, Gi+1/Gi = GiNi+1/Gi ≅ Ni+1 /( Gi ∩Ni+1) = Ni+1/Ni. 

Therefore, Ni+1/Ni is s-simple. From case 1 and case 2 we have either Ni+1 = Ni 

or Ni+1/Ni is s-simple. Delete repeats to get an s-composition series for N. 

3.5.10 THEOREM. (Jordan Hölder) Let G be an s-group, suppose that  

{e} = N0 s N1 s … s Nn = G 

{e} = M0 s M1 s … s Mm = G, be two s-composition series for G. Then  

(i) m = n. 

(ii) Up to possible rearrangements the two series have s-isomorphic factors. 

PROOF: We may assume that n < m, we will pursue the proof by induction on 

n. If n = 1 then G is s-simple, and so Mm-1 = {e}. Thus m = 1. 

If Nn-1 = Mm-1 = K we may assume that n > 1. 

Case 1. We get  

{e} = M0 s M1 s … s Mm-1 = K 

{e} = N0 s N1 s … s Nm-1 = K.  

Then by inductive hypothesis in K we get n-1 = m-1, so n = m. 

Case 2. 
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If Nn-1 ≠ Mm-1 but Nn-1Mm-1 is s-normal in G and G/ Nn-1 ,G/Mm-1 are s-simple, 

then Nn-1Mm-1 = G. Let D = Nn-1∩Mm-1, then D has an s-composition series by 

the lemma (say) 

{e} = D0 s D1 s … s Dk = D 

Now inductive hypothesis in Nn-1 we get n-1 = k +1, and Mm-1 has one of 

length k+1 and the other one of length m-1. Hence m-1 = k + 1. It follows that 

m = n. 

D

Nn-1 Mm-1

G= Mm-1Nn-1

3.5.11 DEFINITION.  A group G is called solvable if there is a series  

{e} = N0 s N1 s … s Nn = G, where each Ni  G and each Ni+1/Ni is abelian. 

EXAMPLE. Abelian groups are solvable, nilpotent groups are solvable too. 

3.5.12 LEMMA. A group G is solvable iff G(n) = {e} for some n < ∞. 

PROOF: If G(n) = {e} then we have  

{e} = G(n) ≤ G(n-1) ≤ … ≤ G' ≤ G, where each one is normal in G and factors are 

abelian. Conversely, suppose that we have a series  

{e} = N0 s N1 s … s Nm = G with Ni+1/Ni abelian thus Nm-1  G, G/Nm-1 

abelian implies that G' ⊂ Nm-1. G' ⊂ Nm-1, thus G'' ⊂ (Nm-1)' ⊂ Nm-2 (since Nm-

2/Nm-1 is abelian). Continue to get G(k) ⊂ Nm-k. Thus G(m) ⊂ N0. 
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3.5.13 THEOREM. The following are equivalent for a finite group G. 

(i) G is solvable 

(ii) Every composition factor is of prime order 

(iii) G(n) = {e}, for some finite n. 

PROOF: (i) → (ii) Let {e} = N0 ≤ N1 ≤ …≤ Nm = G, where Ni  G, Ni+1/Ni abelian. 

Now insert groups between the Ni's so this series can be refined to be a 

composition series, say,  

{e} = G0  G1  …  Gn = G, 

with Gi +1/Gi are abelian, i = 0, 1, …, n-1, and it is a composition factor, so it is 

simple. Simple and abelian implies that they have prime order. 

(ii) → (iii), and (iii) → (i) are done before. 

EXERCISES. 1. If G is solvable, H ≤ G then H is solvable. 

EXERCISEs. 2. If G is solvable, N  G then G/N is solvable. 

EXERCISEs. 3. N  G, N is solvable, G/N is solvable then G is solvable. 
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Chapter IV 

4.1 Rings 

4.1.1 DEFINITION. A ring R is a non-empty set with two binary 

operations, denoted by addition and multiplication "+", ".", such that the 

following properties hold:  

(i) For all a, b, c ∈ R, a + (b + c) = (a + b) + c and a(bc) = (ab)c.  

(ii) For all a, b ∈ R, a + b = b + a.  

(iii) For all a, b, c ∈ R, a(b + c) = ab + ac and (a + b)c = ac + bc.  

(iv) The set R contains an additive identity element, denoted by 0, and a 

multiplicative identity element, denoted by 1, such that a + 0 = a, 1a = a, and a1 = a, 

for all a ∈ R.  

(v) For each a ∈ R, the equation a + x = 0 has a solution x = -a in R, the additive 

inverse of a. 

A ring R is called commutative if ab = ba for all elements a, b ∈ R. 

commutative examples 

EXAMPLE. 1 (Z, +, .) is a ring. 

EXAMPLE. 2 (Zn, ⊕, ⊗) is a ring for any positive integer n ≥ 2. 

Non-commutative examples  

We want to include, among other examples, the study of n×n matrices. Recall 

that if F is a field, then the set of n×n matrices Mn(F) corresponds to the set of 

linear transformations of an n-dimensional 

vector space over F. This is a special case of the most general example of a 

ring. Just as permutation groups are the generic groups (as shown by Cayley's 

theorem), the generic examples of rings are found in studying 

endomorphisms of abelian groups.  
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EXAMPLE. (Endomorphisms of abelian groups) Let A be an abelian group, 

with its operation denoted by +. Let R be the set of all endomorphisms of A. 

That is, R is the set of all group homomorphisms f : A → A. We can define 

addition and multiplication of elements of R as follows: if f, g ∈ R, then (f + 

g)(x) = f(x) + g(x) and (f.g) (x) = f(g(x)) for all x ∈ A.  

R forms a ring and is denoted by End(A). 

EXAMPLE. (Polynomial Rings) Let R be any ring. We let R[x] denote the set of 

infinite tuples (a0, a1, a2, ...) such that ai ∈ R for all i, and ai ≠ 0 for only finitely 

many terms ai. Two sequences are equal if and only if all corresponding terms 

are equal. We introduce addition and multiplication as follows:  

(a0, a1, a2, ...) + (b0, b1, b2, ...) = (a0 + b0, a1 + b1, a2 + b2, ...)  

(a0, a1, a2, ...).(b0, b1, b2, ...) = (c0, c1, c2, ...),  

where cn = ∑ a
=

n

i 0
ibn-i.  

With these operations it can be shown that R[x] is a ring.  

We can identify a ∈ R with (a, 0, 0,...) ∈ R[x], then (1, 0, 0, ...) is an identity for 

R[x]. If we let x = (0, 1, 0,...), then the elements of R[x] can be expressed in the 

form  

a0 + a1x + … + am-1xm-1 + amxm, 

allowing us to use our previous notation for the ring of polynomials over R in 

the indeterminate x. 

Note that although the elements of R need not commute with each other, they 

do commute with the indeterminate x.  

If n is the largest nonnegative integer such that an ≠ 0, then we say that the 

polynomial has degree n, and an is called the leading coefficient of the 

polynomial.  

EXAMPLE. (Differential operator rings) Consider the homogeneous linear 

differential equation an(x)Dny + … + a1(x)Dy + a0(x)y = 0, where the solution 

y(x) is a polynomial with complex coefficients, and the terms ai(x) also belong 
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to C[x]. The equation can be written in compact form as L(y) = 0, where L is 

the differential operator  

an(x)Dn + … + a1(x)D + a0(x) = 0, 

with D = d/dx. Thus the differential operator can be thought of as a 

polynomial in the two indeterminates x and D, but in this case the 

indeterminates do not commute, since D(xy(x)) = y(x) + x D(y(x)),  

yielding the identity Dx = 1 + xD.  

Repeated use of this identity makes it possible to write the composition of 

two differential operators in the standard form  

a0(x) + a1(x)D + … + an(x)Dn, 

and we denote the resulting ring by C[x][D].  

EXAMPLE. (Group algebras) Let K be a field, and let G be a finite group of 

order n, with elements 1 = g1, g2, … , gn. The group algebra KG is defined to 

be the n-dimensional vector space over K with the elements of G as a basis. 

Vector addition is used as the addition in the ring. Elements of KG can be 

described as sums of the form c∑
=i 0

n

=

n

i

igi  and multiplication is defined as for 

polynomials, where the product gi gj is given by the product in G.  

EXAMPLE. (Matrix rings) Let R be a ring. We let Mn(R) denote the set of all n×n 

matrices with entries in R. For [aij] and [bij] in Mn(R), we use componentwise 

addition [aij] + [bij] = [aij + bij] and the multiplication is given by [aij].[bij] = [cij] 

where [cij] is the matrix whose j, k-entry is cjk = ∑ a
0

jibik.  

4.1.2 DEFINITION.  Let R be a ring, and let a ∈ R. If ab = 0 for some 

nonzero b ∈ R, then a is called a left zero divisor. Similarly, if ba = 0 for 

some nonzero b ∈ R, then a is called a right zero divisor. If a is neither a left 

zero divisor nor a right zero divisor, then a is called a regular element.  

The element a ∈ R is said to be invertible if there exists an element b ∈ R such that 

ab = 1 and ba = 1. The element a is also called a unit of R, and its multiplicative 

inverse is usually denoted by a-1. The set of all units of R is denoted by U(R).  
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EXERCISE. In any ring R, show that the following is true for all a, b ∈ R: 

(a) 0.a = 0.  

(b) (-1)a = - a. 

(c) (-a)b = a(-b) = - ab. 

(d) if u is a unit then u is not a zero divisor. 

4.1.3 PROPOSITION. Let R be a ring. Then the set U(R) of units of R is a 

group under the multiplication of R.  

PROOF. EXERCISE. 

4.1.4 DEFINITION. A ring R in which each nonzero element is a unit is 

called a division ring or skew field.  

4.1.5 DEFINITION. A commutative ring R in which each nonzero element 

is a unit is called a field.  

EXAMPLE. Let R1, R2 be two rings. Let R = R1⊕R2= {(r1, r2)| r1 ∈R1, r2 ∈ R2}. 

Then R is a ring with addition and multiplication defined componentwise. 

4.1.6 DEFINITION. Let R be a ring. A nonempty subgroup I of R under 

addition is called an ideal of R if ra, ar ∈ I, for all a ∈ I and r ∈ R. I is called 

left ideal if only ra ∈ I, and is called right ideal if only ar ∈ I. 

4.1.7 PROPOSITION. Let R be a commutative ring. Then R is a field if and 

only if it has no proper nontrivial ideals. 

PROOF. Assume that R is a field. Let I be an ideal, if there is a ∈ I, a ≠ 0. Then a 

has an inverse a-1. Therefore aa-1 ∈ I, by definition of I. Therefore 1 ∈ I, it 

follows that for every b ∈ R, b = b.1 ∈ I. Thus R ⊂ I. 

Conversely, If R is a ring with no proper ideals then for every a ∈ R, a ≠ 0 the 

ideal Ra = R, thus there is an element b ∈ R, such that ba = 1. Therefore, a is a 

unit. Hence R is a field. 

4.1.8 DEFINITION. A ring R with no proper ideals is called simple. 
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EXAMPLE. Let R = Z, nZ = {nz| z ∈ Z} is an ideal for every n ∈ Z. 

4.1.9 DEFINITION. Let I be a proper ideal of the commutative ring R. Then 

I is said to be a prime ideal of R if for all a, b ∈ R it is true that ab ∈ I 

implies a ∈ I or b ∈ I.  

4.1.10 DEFINITION. The ideal I is said to be a maximal ideal of R if for all 

ideals J of R such that I ⊂ J ⊂ R, either J = I or J = R.  

4.1.11 DEFINITION. For an ideal I of a commutative ring R, the set {a + I | 

a ∈ R } of cosets of I in R (under addition) is denoted by R/I. The set R/I forms 

a group under addition.  

The next theorem justifies calling R/I the factor ring of R modulo I.  

4.1.12 THEOREM. If I is an ideal of the commutative ring R, then R/I is a 

commutative ring, under the operations  

(a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I, for all a, b ∈ R. 

PROOF. EXERCISE. 

4.1.13 DEFINITION. Let R, S be rings. A function ϕ : R → S is called a ring 

homomorphism from R into S if the following two conditions hold: 

(a) ϕ(a + b) = ϕ(a) + ϕ(b) 

(b) ϕ(ab) = ϕ(a)ϕ(b), for all a, b ∈ R. 

We denote kerϕ = {a∈ R| ϕ(a) = 0}. 

A ring homomorphism that is one to one and onto is called isomorphism, and 

in this case R and S are called isomorphic and denoted by R ≅ S. If R = S then 

it is called an automorphism of R. 

of course (a) says that ϕ is a group homomorphism. This implies that all 

homomorphism theorems for groups hold for rings. 

EXERCISE. Show that if ϕ is a homomorphism then kerϕ is an ideal. 
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4.2 Integral domains 

4.2.1 DEFINITION. A commutative ring R is called an integral domain if 

for all a, b ∈ R, ab = 0 implies a = 0 or b = 0.  

The ring of integers Z is the most fundamental example of an integral 

domain. The ring of all polynomials with real coefficients is also an integral 

domain, but the larger ring of all real valued functions is not an integral 

domain. The cancellation law for multiplication holds in R if and only if R has 

no nonzero divisors of zero. One way in which the cancellation law holds in R 

is if nonzero elements have inverses in a larger ring; the next two results 

characterize integral domains as subrings of fields (that contain the identity 

1).  

4.2.2 DEFINITION. A subset S of a ring R is called a subring if  

(a) (S, +) is a subgroup of R. 

(b) multiplication is a binary operation on S. 

i.e., a subring is a subset of R that is a ring under the same operations of R. 

Subrings of R do not have to have the same multiplicative identity of R. We 

can see this clear in the following example. 

EXAMPLE. Let R = M2×2(R). Let S = { [aij] | a12 = 0, a21 = 0, a22 = 0}. S is a subring 

under matrix addition and multiplication with multiplicative identity [aij] 

with a11 = 1, a12 = 0, a21 = 0, a22 = 0. This is of course different than the identity 

of R. 

Subrings with the same multiplicative identity is called unital subrings. 

4.2.3 THEOREM. Let F be a field . Any unital subring of F is an integral 

domain.  

PROOF. EXERCISE. 
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4.2.4 THEOREM. Any finite integral domain must be a field. 

PROOF. EXERCISE. 

4.2.5 DEFINITION. Let R be a ring. An integer n is called the 

characteristic of R if n is the smallest integer such that na = 0, for all a ∈ R. 

EXERCISE. Show that n is the characteristic of R iff n1 = 0. 

4.2.6 PROPOSITION. An integral domain has characteristic 0 or p, for 

some prime number p.  

4.2.7 PROPOSITION. Let I be a proper ideal of the commutative ring R.  

(a) The factor ring R/I is a field if and only if I is a maximal ideal of R.  

(b) The factor ring R/I is a integral domain if and only if I is a prime ideal of R.  

(c) If I is maximal, then it is a prime ideal.  

PROOF. (a) Let R/I be a field. Let J be an ideal with I ⊂ J ⊂ R. Then J/I is an 

ideal of R/I, however R/I is a field, therefore either J/I = I or J/I = R/I. It 

follows that either J = I or J = R. Thus I is maximal. Conversely, If I is maximal 

then R/I has no proper ideals therefore by EXERCISE () R/I is a field. 

(b) Assume that R/I is an integral domain. Let ab ∈ I, we would like to show 

that either a ∈ I or b ∈ I. Note that (I + a)(I + b) = (I + ab) = I, but R/I is an 

integral domain i.e., it has no zero-divisors, it follows that either (I + a) = I, or 

(I + b) = I, i.e., a ∈ I or b ∈ I. i.e., I is prime. Conversely, assume that I is 

prime. To show that R/I does not have zero-divisors. Let (I + a)(I + b) = (I + 

ab) = I, this implies that ab ∈ I, and since I is prime then either a ∈ I or b ∈ I. 

Thus either (I + a) = I, or (I + b) = I, i.e., R/I has no zero-divisors. 

(c) I is maximal implies, by (a), that R/I is a field and, by (b), every field is an 

integral domain, so R/I is an integral domain, therefore , by (b), I is prime. 

4.2.8 DEFINITION. Let R be a commutative ring, and let a ∈ R. The ideal  

Ra = {x ∈ R | x = ra for some r ∈ R } 
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is called the principal ideal generated by a.  An integral domain in which every 

ideal is a principal ideal is called a principal ideal domain denoted by PID.  

EXAMPLE. (Z is a principal ideal domain) Theorem [] shows that the ring of 

integers Z is a principal ideal domain. Moreover, given any nonzero ideal I of 

Z, the smallest positive integer in I is a generator for the ideal.  

4.2.9 THEOREM. Every nonzero prime ideal of a principal ideal domain is 

maximal ideal. 

PROOF. EXERCISE. 

EXAMPLE. (Ideals of F[x]) Let F be any field. Then F[x] is a principal ideal 

domain, since by Theorem [] the ideals of F[x] have the form I = 〈f(x)〉, where 

f(x) is the unique monic polynomial of minimal degree in the ideal. The ideal I 

is prime (and hence maximal) if and only if f(x) is irreducible. If p(x) is 

irreducible, then the factor ring F[x]/〈p(x)〉 is a field.  

For any ring R, it is clear that the set {0} is an ideal, which we will refer to as 

the trivial ideal. Another ideal of R is the ring R itself.  

4.2.10 DEFINITION. Let R be a ring, and let a ∈ R. The left ideal  

Ra = {x ∈ R | x = ra for some r ∈ R} 

is called the principal left ideal generated by a. 

4.2.11 PROPOSITION. Let R be a ring, and let I, J be left ideals of R. The 

following subsets of R are left ideals. 

(a) I∩J;  

(b) I + J = {x ∈ R | x = a + b for some a ∈ I, b ∈ J}; 

(c) IJ = { a∑
=

n

i 1
ibi | ai ∈ I, bi ∈ J, n ∈ Z}. 

PROOF. EXERCISE. 

EXAMPLE. (Ideals of Mn×n(R))  
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Let R be a ring, and let Mn×n(R) be the ring of matrices over R. If I is an ideal 

of R, then the set Mn×n(I) of all matrices with entries in I is an ideal of S. 

Conversely, every ideal of S is of this type.  

4.2.12 PROPOSITION. Any ring R is isomorphic to a subring of an 

endomorphism ring End(A), for some abelian group A. 

PROOF. For a ∈ R, Let ra : R → R be defined by ra(x) = xa. ra is an 

endomorphism of abelian group (R, +), since (x + y)ra = (x + y)a = xa + ya = 

(x)ra + (y)ra. Let θ: R → End(R) defined by θ(a) = ra. θ is a ring isomorphism. 

To see that we need to show that (1) θ(ab) = θ(a)θ(b). (2) θ(a + b) = θ(a) + θ(b). 

(3) ker(θ) = {0}. 

For (1) we need to show that rab = rarb, but this means that, for x ∈ R (x)ab = 

(xa)b, and this is the associativity in R. For (2) we use the left distributive law 

in R. For (3) a ∈ ker(θ) iff ra = 0, i.e., 0 = (1)ra = 1a = a. So ker(θ) = 0. This 

completes the proof. 

4.2.13 THEOREM. (Fundamental Homomorphism Theorem for Rings) 

Let  ϕ :R → S be a ring homomorphism. Then ϕ(R) is a subring of S, R/ker(ϕ) 

is a ring, and R/ker(ϕ) ≅ ϕ(R). 

PROOF. Let N = ker(θ). Let θ be the homomorphism θ : R/N → ϕ(R), defined 

by θ(Nx) = ϕ(x). we have seen before that this is a group isomorphism. So we 

have R/N ≅ ϕ(R) as abelian groups under +. To show that it is a ring 

homomorphism we need to show that θ( NaNb) = θ(Na)θ(Nb), i.e., but this is 

true since θ(NaNb) = θ(Nab) = ϕ(ab) = ϕ(a)ϕ(b) = θ(Na)θ(Nb). 
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4.2.14 PROPOSITION. Let I be an ideal of the ring R.  

(a) The natural projection mapping π:R → R/I defined by π(a) = a + I for all a ∈ R is 

a ring homomorphism, and ker(π) = I.  

(b) There is a one-to-one correspondence between the ideals of R/I and ideals of R 

that contain I.  

(c) If K is an ideal of R with I ≤ K ≤ R, then (R/I)/(K/I) ≅ R/K. 

PROOF. EXERCISE. 

4.2.15 THEOREM. (Chinese Remainder Theorem) Let R be a ring, and let 

I1, I2 be ideals of R such I1 + I2 = R. Then  

( R / I1)⊕( R / I2) ≅ R / (I1∩I2). 

PROOF. Let θ : R → ( R / I1)⊕( R / I2) be a function defined as follows  

θ(r) = (r + I1, r + I2) 

To see that θ is a homomorphism θ( a + b) = (a + b + I1, a + b + I2) = (a + I1+ b + 

I1, a + I2 + b + I2) = (a + I1, a + I2) + (b + I1, b + I2) = θ(a) + θ(b). 

θ(ab) = (ab + I1, ab + I2) = ((a + I1)(b + I1), (a + I2)(b + I2)) = (a + I1, a + I2)(b + I1, b 

+ I2) = θ(a)θ(b). 

ker θ = { r ∈ R | (r + I1, r + I2) = (I1, I2)} 

= { r ∈ R | (r ∈ I1and r ∈ I2)}  

= { r ∈ R | (r ∈ I1∩ I2)}. 

θ is surjective, since if (a + I1, b + I2) ∈ ( R / I1)⊕( R / I2), we need to find r ∈ R 

with r + I1 = a +I1, r + I1 = b +I2. But since I1 + I2 = R then a -b = r2 - r1 where 

r1∈ I1, r2∈ I2 and then a = b + r2 - r1. Let r = a + r1 = b + r2 . Then r ∈ a + r1 + I1= 

a + I1 and r = b + r2 ∈ b + r2 + I2 = b + I2. Then by Fundamental theorem ( R / 

I1)⊕( R / I2) ≅ R / (I1∩I2).  

4.3 Definition of a module 

4.3.1 DEFINITION. Let R be a ring, and let M be an abelian group. Then 

M is called a left R-module if there exists a scalar multiplication  
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 ψ:R × M → M denoted by ψ(r, m) = r m, for all r ∈ R and all m ∈ M, such that for 

all r, r1, r2 ∈ R and all m, m1, m2 ∈ M,  

(i) r(m1 + m2) = rm1 + rm2  

(ii) (r1 + r2) m = r1m + r2m  

(iii) r1(r2m) = (r1 r2) m  

(iv) 1 m = m. 

To denote that M is a left R-module we write RM. 

EXAMPLE. If R is a ring then R itself is an R-Module, Left R-module and right 

R-module. So when we want to stress the fact that R is a left R-module we 

write RR. 

EXAMPLE. (Vector spaces over F are F-modules) If V is a vector space over a 

field F, then it is an abelian group under addition of vectors. The familiar 

rules for scalar multiplication are precisely those needed to show that V is a 

module over the ring F.  

EXAMPLE. (Abelian groups are Z-modules) If A is an abelian group with its 

operation denoted additively, then for any element x ∈ Z and any positive 

integer n, we have defined nx to be the sum of x with itself n times. This is 

extended to negative integers by taking sums of -x. With this familiar 

multiplication, it is easy to check that A becomes a Z-module.  

Another way to show that A is a Z-module is to define a ring homomorphism  

ϕ :Z → End(A) by letting  ϕ (n) = n1, for all n ∈ Z. This is the familiar mapping 

that is used to determine the characteristic of the ring End(A). The action of Z 

on A determined by this mapping is the same one used in the previous 

paragraph.  

If M is a left R-module, then there is an obvious definition of a submodule of 

M: any subset of M that is a left R-module under the operations induced from 

M. The subset {0} is called the trivial submodule, and is denoted by (0). The 

module M is a submodule of itself, an improper submodule. It can be shown 
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that if M is a left R-module, then a subset N ⊂ M is a submodule if and only if 

it is nonempty, closed under sums, and closed under multiplication by 

elements of R.  

If N is a submodule of RM, then we can form the factor group M/N. There is a 

natural multiplication defined on the cosets of N: for any r ∈ R and any x ∈ 

M, let r(x + N) = rx + N. If x + N = y + N, then x-y ∈ N, and so rx-ry = r(x-y)N, 

and this shows that scalar multiplication is well-defined. It follows that M/N 

is a left R-module, called left factor R-module 

Any submodule of RR is a left ideal of R. A submodule of RR is called a ideal 

of R, and it is clear that a subset of R is an ideal if and only if it is both a left 

ideal and a right ideal of R.  

For any element m of the module M, we can construct the submodule  

Rm = { x ∈ M | x = rm for some r ∈ R }. 

This is the smallest submodule of M that contains m, so it is called the cyclic 

submodule generated by m. More generally, if X is any subset of M, then the 

intersection of all submodules of M which contain X is the smallest 

submodule of M which contains X. We will use the notation 〈X〉 for this 

submodule, and call it the submodule generated by X. We must have Rx ⊂ 〈X〉 

for all x ∈ X, and then it is not difficult to show that  

〈X〉 = xa
Xx

X∑
∈

. 

4.3.2 DEFINITION. The left R-module M is said to be finitely generated 

if there exist m1, m2, . . . , mn ∈ M such that  

M = Rm∑
=

n

i 1
i. 
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In this case, we say that { m1, m2, . . . , mn } is a set of generators for M. The module 

M is called a free module if there exists a subset X ⊂ M such that each element m ∈ 

M can be expressed uniquely as a finite sum  

m = a∑
=

n

i 1
ixi, with a1, . . . , an ∈ R and x1, . . . , xn ∈ X. 

We note that if N is a submodule of M such that N and M/N are finitely 

generated, then M is finitely generated. In fact, if x1, . . . , xn generate N and y1 

+ N, y2 + N, . . . , ym + N generate M/N, then x1, . . . , xn, y1, . . . , ym generate 

M.  

The module RR is the prototype of a free module, with generating set {1}. If 

RM is a module, and X ⊂ M, we say that the set X is linearly independent if 

a∑
=i 1

n

ixi = 0 implies ai = 0 for i = 1, ..., n, for any distinct x1, . . . , xn ∈ X and any 

a1, a2, . . . , an ∈ R. Then a linearly independent generating set for M is called a 

basis for M, and so M is a free module if and only if it has a basis.  

4.3.3 DEFINITION. Let M and N be left R-modules. A function f :M → N 

is called an R-homomorphism if  

f(m1 + m2) = f(m1) + f(m2) and f(rm) = rf(m) 

for all r ∈ R and all m, m1, m2 ∈ M. The set of all R-homomorphisms from M 

into N is denoted by  

HomR(M, N) or Hom(RM, RN). 

For an R-homomorphism f ∈ HomR(M, N) we define its kernel as  

ker(f) = { m ∈ M | f(m) = 0 }. 

We say that f is an isomorphism if it is both one-to-one and onto. Elements of 

HomR(M, M) are called endomorphisms, and isomorphisms in HomR(M, M) 

are called automorphisms. The set of endomorphisms of RM will be denoted 

by EndR(M). 
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4.3.4 PROPOSITION. Let M be a free left R-module, with basis X. For any 

left R-module N and any function ϕ :X → N there exists a unique R-

homomorphism  

f :M → N with f(x) = ϕ(x), for all x ∈ X. 

PROOF. Since X is a basis for M, then every element of M can be written as a 

linear combination of elements of the basis i.e., for m ∈ M there is a1,  ak ∈ R 

such that m = ∑aixi, with xi ∈ X. Define f : M → N by the rule f(m) = ∑ai ϕ(xi), 

then by definition the right hand side belongs to N. It is easy to see that f is a 

R-homomorphism that satisfies the given equation f(x) = ϕ(x), for all x ∈ X. 

iX M

ϕ  
f 

N

4.3.5 THEOREM. Let N, N0, M0 be submodules of RM. 

(a) N0 / (N0 ∩ M0) ≅ (N0 + M0) / M0. 

(b) If N0 ⊂ N, then (M / N0) / (N / N0) ≅ M / N. 

(c) If N0 ⊂ N, then N ∩ (N0 + M0) = N0 + (N ∩ M0). 

PROOF. EXERCISE.  

4.3.6 DEFINITION. A non-empty set P is called a poset (Partially ordered 

set), if there is a relation ≤ on the elements of P satisfies the following 

conditions: 

(i) ≤ is reflexive, i.e., for every x ∈ P; x ≤ x. 

(ii) ≤ is antisymmetric, i.e., if x ≤ y and y ≤ x then x = y. 

(iii) ≤ is transitive, i.e., if x ≤ y and y ≤ z then x ≤ z. 

4.3.7 LEMMA. (Zorn) Given a poset P ≠ ∅. Assume that for every linearly 

ordered subset L ⊂ P, there is b ∈ P such that b ≥ x for all x ∈ L. Then there 

exists m ∈ P such that m is maximal in P. 
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4.3.8 LEMMA. Let X be any subset of the module RM. Any submodule N 

with N ∩ X ⊂ (0) is contained in a submodule maximal with respect to this 

property.  

PROOF. Let H = { N ≤ M| N ∩ X = (0)}. H ≠ φ, since (0) ∈ H. We would like to 

show that H has a maximal submodule. By Zorn's Lemma, it is enough to 

show that every linearly ordered set of H has a maximal submodule. So let N1 

⊂ N2 ⊂ N3 ⊂ …, be a series of submodules in H. Let N = ∪iNi. N is a 

submodule (prove !) in H, since Ni ∩ X = (0) for all i. So every linearly 

ordered set of H has a maximal submodule. Thus H has a maximal submodule 

N. 

REMARK. Here,  I want to remark that the maximal submodule that we have 

proved to exist in the last lemma is not maximal in the sense that there is no 

submodule larger than it, except the whole module, but it is maximal having 

the property that it has no elements common with the set X. i.e., If L is 

another submodule with this property N ∩ X ⊂ (0) then it must contain L ⊂ N. 

A submodule N of the left R-module M is called a maximal submodule if N ≠ 

M, and for any submodule K with N ⊂ K ⊂ M, either N = K or K = M. 

Consistent with this terminology, a left ideal A of R is called a maximal left 

ideal if A ⊂ R and for any left ideal B with A ⊂ B ⊂ R, either A = B or B = R. 

Thus A is maximal precisely when it is a maximal element in the set of proper 

left ideals of R, ordered by inclusion. It is an immediate consequence of 

Lemma (  ) that every left ideal of the ring R is contained in a maximal left 

ideal, by applying the proposition to the set X = {1}. Furthermore, any left 

ideal maximal with respect to not including 1 is in fact a maximal left ideal.  

4.3.9 PROPOSITION. For any nonzero element m of the module RM and 

any submodule N of M with m not in N, there exists a submodule N* maximal 
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with respect to N* containing N with m not in N*. Moreover, M/N* has a 

minimal submodule contained in every nonzero submodule. 

PROOF. EXERCISE. 

4.3.10 COROLLARY. Any proper submodule of a finitely generated module 

is contained in a maximal submodule.  

4.3.11 DEFINITION. Let R be a ring, and let M be a left R-module. For any 

element m ∈ M, the left ideal  

Ann(m) = { r ∈ R | rm = 0 } 

is called the annihilator of m. The ideal  

Ann(M) = { r ∈ R | rm = 0 for all m ∈ M }. 

is called the annihilator of M.  

The module M is called faithful if Ann(M) = (0).  

4.3.12 DEFINITION. A nonzero module RM is called simple (or 

irreducible) if its only submodules are (0) and M.  

We first note that a submodule N ⊂ M is maximal if and only if M/N is a 

simple module. A submodule N ⊂ M is called a minimal submodule if N ≠ (0) 

and for any submodule K with (0) ⊂ K ⊂ N, either N = K or K=(0). With this 

terminology, a submodule N is minimal if and only if it is simple when 

considered as a module in its own right.  

4.3.13 LEMMA. (Schur) If RM is simple, then EndR(M) is a division ring.  

PROOF. EndR(M) has ring structure under addition and composition of maps, 

defined as follows: Let ϕ, θ ∈ EndR(M), let x ∈ M, then  

(ϕ + θ)(x) = ϕ(x) + θ(x), 

(ϕ . θ)(x) = ϕ(θ(x)). 

It is easy to see that EndR(M) has ring structure with the 0, 1 as the zero 

endomorphism and identity endomorphism. 
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The only thing we need to prove is that every non-zero endomorphism ϕ has 

an inverse ϕ-1. But this holds since kerϕ is an R-submodule of M, therefore by 

simplicity of M kerϕ = 0. Thus ϕ is one to one. Since ϕ(M) is also an R-

submodule of M, therefore by simplicity of ϕ(M) = M provided that ϕ is not 

the zero endomorphism. 

4.3.14 PROPOSITION. The following conditions hold for a left R-module M.  

(a) The module M is simple if and only if Rm = M, for each nonzero m ∈ M.  

(b) If M is simple, then Ann(m) is a maximal left ideal, for each nonzero m ∈ M. 

(c) If M is simple, then it has the structure of a left vector space over a division ring.  

PROOF. (a) Let M be a simple R-module. The set Rm is a submodule of M. It 

follows by simplicity of M that Rm = M. 

Conversely, if Rm = M for all 0 ≠ m ∈ M then M has no proper submodules. 

I.e., M is simple. 

(b) Let M be a simple R-module. Let m ∈ M. Let θ : R → M be defined by  

θ(r) = rm. θ is a R-homomorphism,  

since θ(s + r ) = (s + r)m = sm + rm = θ(s) + θ(r) and  

θ(sr) = (sr)m = s(rm) =sθ(r). Then by homomorphism theorem we have 

RR/ker(θ) ≅ M ( Note that θ is onto by simplicity of M). 

Now ker(θ) = { r ∈ R | rm = 0} = ann(m). Thus R/ker(θ) ≅ M. Simplicity of M 

now implies that ann(m) is maximal. 

(c) EXERCISE.  

4.4 The Jacobson Radical 

4.4.1 DEFINITION. Let M be a left R-module. The intersection of all 

maximal submodules of M is called the Jacobson radical of M, and is 

denoted by J(M). 

This would make J(R) = ∩{I | I is maximal left ideal of R}. 
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4.4.2 PROPOSITION.  J(R) = ∩{ann(M)| M is simple left R-module}. 

PROOF. By Proposition () ann(M) is maximal left ideal of R. It follows that   

J(R) ⊂ ∩{ann(M)| M is simple left R-module}. For the reverse inclusion, let I 

be a maximal left ideal of R. Let u ∈ ∩{ann(M)| M is simple left R-module}. 

We will show that u ∈ I. Since I is maximal left ideal then R/I is a simple left 

R- module. It follows that u(R/I) = I (0 in R/I). So, u(a + I) = I for all a ∈ R. 

Take a = 1, then u + I = I. Thus     u ∈ I. Hence ∩{ann(M)| M is simple left R-

module} ⊂ ∩{I | I is maximal left ideal of R}. Hence they are equal. 

4.4.3 LEMMA.  (Nakayama) If RM is finitely generated and J(R)M = M, 

then M = (0). 

PROOF. EXERCISE. 

4.4.4 LEMMA. Let U be a proper left ideal of the ring R, then there exits a 

maximal left ideal V of R such that U ⊂ V. 

PROOF. Let P = { I ⊂ R | I is left ideal of R , U ⊂ I ≠ R}. P ≠ ∅ since U ∈ P. P is 

a poset ordered by inclusion. Let L be a set of linearly ordered ideals of P. we 

need to find I ∈ P such that J ⊂ I for all J ∈ L. Let I = ∪ { J | J ∈ L}. Show that I 

is an ideal containing U. Then by Zorn's Lemma there is an ideal V that 

satisfies the lemma. 

4.4.5 PROPOSITION. For any ring R, J(R) is two sided ideal. 

PROOF. Let r ∈ R, let x ∈ J(R) and Let M be a simple left R-module. Since xM = 

0 then rxM = 0. Since rM = M by simplicity of M then x(rM) = (xr)M = xM = 0, 

it follows that xr ∈ J(R). Thus J(R) is a right ideal of R. Whence it is two sided 

ideal. 
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4.4.6 DEFINITION. If R is a ring, x ∈ R is called right-quasi-regular if 1 - 

x has a right inverse (denoted rqr). Similarly x is left-quasi-regular if 1 - x 

has a left inverse (denoted lqr) and x is called quasi-regular if 1 - x is both rqr  

and lqr ( denoted qr). 

Note x is qr iff x is a unit in R. 

4.4.7 PROPOSITION. Let x ∈ J(R) then x is lqr.  

PROOF. R(1 - x) is a left ideal of R. If R(1 - x) = R, then  1∈ R(1 - x), so there is 

r∈R such that 1 = r(1 - x), so r is the right inverse of (1 - x). Thus x is lqr. 

Now assume that R(1 - x) < R. By Zorn's Lemma there is a maximal ideal I 

with R(1 - x) ⊂ I. Thus 1 - x ∈ I, but x ∈ I then 1 ∈ I implying that I = R 

contradicting the maximality of I. 

4.4.8 COROLLARY. Let x ∈ K(R) = ∩{I | I is maximal right ideals of R} 

then x is rqr. 

PROOF. EXERCISE. 

4.4.9 THEOREM. Let I be any left ideal of R with the property that every 

element of I is  lqr then I ⊂ J(R). 

PROOF. Let M be a maximal left ideal of R. We will show that I ⊂ M. If not , 

i.e., if I is not contained in M then there is an ideal I + M which is a left ideal 

of R containing M properly, therefore I + M = R. Thus there is u ∈ I, m ∈ M 

such that u + m = 1. Then m = 1 - u. Since u is lqr then there is a left inverse of 

1- u = m. It follows that 1 ∈ Rm ⊂ M, contradicting the maximality of M. 

Hence I ⊂ M. 

4.4.10 THEOREM. For a ring R, J(R) = ∩{I | I is maximal right ideals of 

R}. 
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PROOF. Let K(R) = ∩{I | I is maximal right ideals of R}. Let u ∈ J(R), to show 

that u ∈ I for every maximal right ideal I of R. It is enough to show that every 

element         u ∈ J(R) is rqr. Since u is lqr then there is r∈R such that r(1 - u) = 

1. Let z = 1 - r. Then (1 - z)(1 - u) = 1. It follows that 1 - z - u + zu = 1. Thus z = 

zu -u. This implies that z ∈ J(R) i.e., z is lqr. Hence 1 - z has a left inverse. I.e., 

y has a right inverse and it must be 1 - u. So, y(1 - u) = (1 - u)y = 1. Thus u is a 

rqr. So u ∈ K(R). The reverse inclusion is similar. 

4.4.11 COROLLARY. (Jacobson-Perlis Condition). x ∈ J(R) iff 1 -rx has 

left inverse for all r ∈ R. 

PROOF. x ∈ J(R) then rx ∈ J(R) since J(R) is left ideal of R. Therefore rx is lqr, 

i.e., 1 - rx has left inverse. Conversely, suppose that 1 - rx has left inverse for 

all r ∈ R. Therefore all the elements of the ideal Rx are lqr then by Theorem ( ) 

Rx ⊂ J(R), so x ∈ J(R). 

4.4.12 DEFINITION. An element x is called nilpotent if xn = 0, for some n ≥ 

0. An additive subgroup U is called nil if each element of U is nilpotent. 

EXERCISE. Let I be a nil left ideal of R. Show that I ⊂ J(R). 

4.4.13 THEOREM. The Jacobson radical J(R) of the ring R is equal to each of 

the following sets: 

(1) The intersection of all maximal left ideals of R; 

(2) The intersection of all maximal right ideals of R; 

(3) {x ∈ R | rx is lqr for all r ∈ R }; 

(4) {x ∈ R | xr is rqr for all r ∈ R }; 

(5) The largest ideal J of R such that 1 - x is invertible in R for all x ∈ J. 

(6) The largest ideal J of R such that J containing nil left ideals of R. 

4.4.14 DEFINITION. The ring R is said to be semiprimitive if J(R) = (0). 
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Chapter V 

5.1 Chain Conditiions 

5.1.1 DEFINITION.  Let P be a poset with order relation ≤. We say that P 

satisfies the ascending chain condition (ACC) if for every chain x1 ≤ x2 ≤ x3 

≤ … ≤ xn ≤ … .there is an integer n such that xn = xn + 1 = xn + 2 = xn + 3 = … . 

And We say that P satisfies the descending chain condition (DCC) if for every 

chain x1 ≥ x2 ≥ x3 ≥ … ≥ xn ≥ … .there is an integer n such that xn = xn + 1 = xn + 2 = 

xn + 3 = …. 

P is said to satisfy the maximal condition (MaxC) if for every non-empty set S ⊂ P 

there is a maximal element x ∈ S, such that if y ∈ S then y ≤ x. 

P is said to satisfy the minimal condition (MinC) if for every non-empty set S ⊂ P 

there is a minimal element x ∈ S, such that if y ∈ S then y ≥ x. 

5.1.2 DEFINITION. An s-group G is said to be Noetherian if the poset of 

all s-subgroups of G satisfies the (ACC). Similarly, G is said to be Artinian if 

the poset of all s-subgroups of G satisfies the (DCC). 

5.1.3 DEFINITION. A module RM is said to be Noetherian if the poset of 

all sumodules of RM satisfies the (ACC). Similarly, M is said to be Artinian 

if the poset of all sumodules of RM satisfies the (DCC). 

EXAMPLE. Z is Notherian but not Artinian, since  

〈2〉 ⊃ 〈4〉 ⊃ 〈8〉 ⊃ … . 

5.1.4 DEFINITION. A ring R is said to be left Noetherian if the module 

RR is Noetherian. A ring R is said to be left Artinian if the module RR is 

Artinian. If R satisfies the conditions for both right and left ideals, then it is 

simply said to be Noetherian or Artinian. 
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5.1.5 THEOREM. Let P be a poset. P satisfies (ACC) iff P satisfies the 

(MaxC). And P satisfies (DCC) iff P satisfies the (MinC). 

PROOF. Assume that P satisfies the (MaxC), to show that P satisfies the (ACC), 

let x1 ≤ x2 ≤ …  be an ascending chain in P. Let S = { xi | i ≥ 1}. S is non-empty. 

Therefore by the (MaxC) there is x ∈ S with x maximal. I.e., x = xn for some n. 

Then xn = xn + 1 = xn + 2 = xn + 3 = …. 

Conversely, assume that P satisfies the (ACC). Let S ⊂ P, S ≠ ∅. Assume that 

there is no maximal element in S. Then for x ∈ S the set Sx = { y ∈ S | y > x } ≠ 

∅. So by the axiom of choice there is a function ϕ : S → S such that ϕ(x) ∈ Sx. 

i.e., x < ϕ(x) < ϕ(ϕ(x) < ϕ3(x) < … < ϕn(x) < … which is a chain that is not 

eventually contant. Contradicting that P satisfies the (ACC). 

Similarly for the (DCC). 

5.1.6 COROLLARY. The following conditions are equivalent for a module 

RM:  

(1) M is Noetherian;  

(2) every nonempty set of submodules of M has a maximal member.  

EXERCISE. Let A, B, K be left submodules of a left R-module M. If A⊂ B and   

A +K = B + K and A∩K = B∩K then A = B. 

5.1.7 PROPOSITION. The following conditions hold for a module RM and 

any submodule N.  

(a) M is Noetherian if and only if N and M/N are Noetherian.  

(b) M is Artinian if and only if N and M/N are Artinian. 

PROOF. (a) Assume that M is Noetherian. Let N1 ≤ N2 ≤ … , be an ascending 

chain of submodules of N, K1/N ≤ K2/N ≤ … be an ascending chain of 

submodules of M/N. Then both N1 ≤ N2 ≤ … and K1 ≤ K2 ≤ …  are ascending 

chains of submodules of M. Therefore by the (ACC) of M both are eventually 

constant. I.e., N, M/N satisfy the (ACC). Conversely, assume that both N, 

M/N satisfy the (ACC).  
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Let M1 ≤ M2 ≤ … , be an ascending chain in M. Consider the ascending chains  

N∩M1 ≤ N∩M2 ≤ …  , 

(N + M1 )/N ≤ ( N + M2 )/N ≤ …    

in N, M/N respectively. Since both N, M/N satisfy the (ACC) then there is a 

finite integer m such that 

 N∩Mm = N∩Mm+1 = …  , 

(N + Mm )/N = ( N + Mm+1 )/N = … 

Thus N + Mm  =  N + Mm+1  and N∩Mm = N∩Mm+1 . Hence by the EXERCISE Mm 

= Mm+1 = …  . whence M satisfies the (ACC). 

(b) The proof is similar. 

EXERCISE. For an R-Module M, show that M is finitely generated iff M is 

Noetherian  

5.1.8 COROLLARY. A finite direct sum of modules is Noetherian if and 

only if each summand is Noetherian; it is Artinian if and only if each 

summand is Artinian.  

5.1.9 PROPOSITION. A ring R is left Noetherian if and only if every 

finitely generated left R-module is Noetherian; it is left Artinian if and only if 

every finitely generated left R-module is Artinian.  

5.1.10 THEOREM. (Hilbert basis theorem) If R is a left Noetherian ring, 

then so is the polynomial ring R[x]. 

PROOF. Suppose that R is Noetherian. Let I ⊂ R[x] be a left ideal. It is enough 

to show that I has a finite generating set. For n ≥ 0, define An  = { a ∈ R | a is a 

leading coefficient of some polynomial f ∈ I with degree of f = n}∪ {0}. We 

claim that An is an ideal of R. To see this, let a, b ∈ An, we want to show that a 

- b ∈ An, we may assume that a ≠ b and a, b ≠ 0. So there are two polynomials 

f, g ∈ I with leading coefficient of f = a, and leading coefficient of g = b. Thus a 

- b is the leading coefficient of f - g and so is all R multiples of a - b. Hence An 

is a left ideal for all n. 
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Note that A1 ⊂ A2 ⊂ … ⊂ An ⊂ … is a chain of left ideals. Since if a ∈ An then 

there is a polynomial f for which a is the leading coefficient, then xf ∈ An+ 1 is 

a polnomial in I with leading coefficient a, so a ∈ An + 1. 

Since R is Noetherian then there is N such that AN = AN + 1 = … . Choose a 

finite generating set Si for Ai with 1 ≤ i ≤ N. Let Si = { ai1, ai2, ai3, …, aik}. Let fij 

be polynomials in I with leading coefficients aij and degree i. We claim now 

that I is generated by all these polynomials fij. To prove that, let J be the ideal 

generated by all fij. Since fij ∈ I then J ⊂ I. Assume that there is f ∈ I, f ∉ J. 

Assume also that the degree of f is minimal. Let m = degree of f. We have two 

cases: 

Case 1. If m ≤ N, let a = leading coefficient of f thus a ∈ Am and threfore a is an 

R-linear combination of amj. Let g be the R-linear of fmj with same coefficients. 

Then g ∈ J thus a is a leading coefficient of g ∈ J, degree of g = m. Now f - g ∉ 

J, degree (f - g) < m thus f - g ∈ I. A contradiction because f was such example. 

Case 2. M > N. a is a leading coefficient of g, a ∈ Am = AN. Therefore a is an R-

linear combination of aNj. Get g as an R-linear combination of fNj. Thus g ∈ J, 

degree of g = N and the leading coefficient og g is a. Now xm-Ng ∉ J and f - xm-

Ng ∈ I. But degree of f - xm-Ng < m. a contradiction.  

We can now give some fairly wide classes of examples of Noetherian and 

Artinian rings. If D is a principal ideal domain, then D is Noetherian since 

each ideal is generated by a single element. It follows that the polynomial 

ring D[x1, x2, ..., xn] is also Noetherian. If F is a field, then F[x]/I is Artinian, 

for any nonzero ideal I of F[x], since F[x] is a principal ideal domain. This 

allows the construction of many interesting examples. Note that D[x]/I need 

not be Artinian when D is assumed to be a principal ideal domain rather than 

a field, since Z[x]/〈x〉 is isomorphic to Z, which is not Artinian.  
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5.2 Semiprimitive Rings 

5.2.1 DEFINITION. Let A, B be additive subgroups of a ring R. AB = the 

additive subgroup generated by all products a b i.e.,   

AB = 〈 {a b| a∈ A, b ∈ B}〉 

Note it can be shown easily that  

AB = { a1b1 + a2b2 + … + anbn | ai ∈ A, bi ∈ B} 

EXERCISE. Show that if A is left ideal then AB is left ideal, and if B is right 

ideal then AB is right ideal. 

5.2.2 DEFINITION. Let A ⊂ R be an additive subgroup. A is called 

nilpotent if An = 0, for some n > 0. 

5.2.3 THEOREM. If R is right Artinian then J(R) is nilpotent. 

PROOF. Let J = J(R). Consider the descending chain 

J ⊇ J2 ⊇ J3 ⊇ …  . 

Since R is Artinian then ∃ integer n such that Jn = Jn+1 =…  . 

To show that Jn = 0, let I = Jn. Assume I ≠ 0. Note I2 = J2n = Jn = I. 

Let S = { N ⊂ I | N is right ideal of R and NI ≠ 0}. Since I ∈ S then S ≠ ∅. 

Since R is Artinian then S has a minimal ideal, say N. Note that N ⊂ I, NI ≠ 0. 

So there is x ∈ N such that xI ≠ 0. 

Now (xI)I = xI ≠ 0 therefore xI ⊇ N by minimality of N. But x ∈ N thus xI = N. 

therefore, ∃ y ∈ I such that x y = x. It follows that x(1 - y) = 0. 

Since y ∈ I ⊂ J, then ∃ z ∈ R such that (1 - y)z = 1. 

It follows that 0 = 0.z = x(1 - y) z = x 1 = x, a contradiction. 

5.2.4 COROLLARY. If R is right Artinian then any nil right ideal is 

nilpotent. 

PROOF. If I is nil right ideal then I ⊂ J(R), but J(R) is nilpotent, then In ⊂ Jn = 0, 

for some n > 0.  

Also any nil left ideal of R is nilpotent. 
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5.2.5 COROLLARY. Let R be left Artinian then TFAE. 

(i) J(R) = 0.( R is semiprimitive) 

(ii) If I is left ideal and I2 = 0 then I = 0.( I is semiprime) 

(iii) If I is an ideal and I2 = 0 then I = 0. 

PROOF. (i) → (ii) I2 = 0 implies that I is nil, therefore I ⊂ J(R) = 0, thus I = 0. 

(ii) → (iii) straightforward. 

(iii) → (i) we know that J(R)n = 0 for some n ≥ 1. Take smallest such n, then Jn-1 

≠ 0. 

Let I = J(R)n -1. It follows that I2 = J(R)2n -2.= 0, then I = 0 by (iii), a 

contradiction. 

 

5.2.6 DEFINITION. A ring R is called a Wedderburn ring if it is Artinian 

and semiprimitive. 

5.2.7 PROPOSITION. Let I be a minimal left ideal of R. Assume that I2 ≠ 0 

then I = Re for some e ∈ R, e2 = e (e is called idempotent). 

PROOF. ∃ a ∈ I, Ia ≠ 0. Ia ⊂ I since a ∈ I and I is left ideal. Ia is a left ideal then 

by minimality of I Ia = I. Thus ∃ e ∈ I, such that ea = a. Therefore e2a = ea =a. it 

follows that a(e2 - e) = 0. 

Let S = { x ∈ I | xa = 0}. S is a left ideal, S ⊂ I. Thus S = 0 or S = I. but I ≠ 0, so 

S = 0. e2 - e ∈ S. then e2 - e = 0. Hence e2 = e. Since e ∈ I then Re ⊂ I, then Re = I 

by minimality of I. 

5.2.8 PROPOSITION. (Pierce Decomposition). Let I be a left ideal of R, 

let e ∈ I with e2 = e then I = Ie ⊕ I(1 - e). 

PROOF. x ∈ I then x(1 - e) ∈ I and Ie ⊂ I. Hence I ⊇ Ie ⊕ I(1 - e). we need to 

show that Ie ∩ I(1 - e) = 0. If x ∈ Ie ∩ I(1 - e), then x = ye for some y ∈ I, and x 

= (1 - e)z, z ∈ I. 

x = ey = e(ez) = e(1 - e)z = (e - e)z = 0z = 0. 
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5.2.9 THEOREM. Every Wedderburn ring is the direct sum of finitely 

many minimal left ideals. 

PROOF. we will prove a more general assertion. We will show that every left 

ideal is the sum of finitely many minimal left ideals. Suppose false. Let S = { I 

⊂ R| I is not the direct sum of finitely many minimal left ideals}. S ≠ ∅. Since 

R is Artinian ring then S has a minimal element I. I ≠ 0. Let M be minimal left 

ideal with M ⊂ I, such ideal exists, again because R is Artinian and the set of 

all ideals contained in I has a minimal one. M ≠ 0, M2 ≠ 0, since R is 

semiprimitive. Thus M = Re, for some idempotent element e ∈ M, with e ≠ 0. 

Now using Pierce decomposition then I = Ie ⊕ I(1 - e) = M ⊕ I(1 - e). Let K = 

I(1 - e), then I = M ⊕ K. Since M ≠ 0, K < I. then K ∉ S. therefore K is the direct 

sum of finitely many minimal left ideals of R. It follows that I is the direct 

sum of minimal left ideals of R, contradicting our assumption. Therefore S = 

∅. Hence R is the direct sum of minimal left ideals. 

Note this theorem could have been stated as follows: if R is Artinian ring then 

RR is the dircet sum of simple left R-modules. 

5.2.10 COROLLARY. If RR is the finite direct sum of minimal left ideals 

{Mi}mi = 1 then every minimal left ideal of R is isomorphic to one of the Mi's. 

5.2.11 COROLLARY. If RR is the direct sum of simple left R-modules {Mi}mi 

= 1 then every simple left simple R-module of R is isomorphic to one of the 

Mi's. 

PROOF. Let S be any simple left R-module, let s ∈ S, s ≠ 0.write 1 = e1 + e2 + … 

+ en, for  idempotent elements ei ∈ Mi, i = 1, 2, …, n. 

0 ≠ s = 1.s = (e1 + e2 + … + en)s = e1s+ e2s+ … + ens. thus eis≠ 0 for some i. 

Fix such i. we will show that S ≅ Mi. 

Let θ : Mi → S be defined by θ(x) = sx, for all x ∈ Mi. It is easy to show that θ 

is an R- homomorphism. θ(ei) = eis ≠ 0.then by simplicity of S, θ(Mi)= S. again 

by simplicity of Mi , kernel of θ is 0. Thus they are isomorphic. 
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EXERCISES 

1. An element γ of a ring R, is called central if γr = rγ for all elements    

r ∈ R. Prove that the set of all central elements Z(R) forms a ring. 

2. Let ϕ be an R-homomorphism of a left R-module M into a left R-

module N; i.e.,  ϕ : M → N. Let U be a subset of M and L be the left 

submodule of M generated by U. Prove that the left submodule of N 

generated by ϕ(U) is ϕ(L). 

3. Let {Ai}i∈I be a family of subsets of a left R-module M, and let Ni 

be the left submodule generated by Ai . Show that ΣiNi is generated by ∪iAi 

. 

4. Let N be a left submodule of a left R-module M. Let {Ai}i∈I be a 

family of submodules of M with N⊂ Ai ⊂ M for all i ∈ I. Show that 

(ΣiAi)/N = Σi (Ai/N) and (∩iAi)/N = ∩i (Ai/N). 

5. Let m be a positive integer and p be prime. Prove that mZ/mpZ is 

a simple Z-module. 

6. Let Ω denote the set of all rational numbers that can be expressed 

in the form m/2k, where m, k  are integers. Show that Ω is a Z-module 

having Z itself as a submodule. Also show that  

(i) each proper submodule of Ω/Z contains only a finite number 

of elements.  

(ii) Ω/Z satisfies the (MinC) but not the (MaxC) 

(iii) Ω/Z as a Z-module is not finitely generated. 

7. Show that an integral domain that satisfies the (DCC) is a field. 

8. Two ideals A, B are called comaximal if  A + B = R. If A, B are 

comaximal show that AB = A∩B. 

9. If the rings R1, R2, …, Rn are left noetherian show that  the direct 

sum R = R1 ⊕ R2 ⊕ ….⊕ Rn is left noetherian. 
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10. Let M be a left R-module. Let M[X] denotes the formal set of " 

polynomials"  elements of the form m0 + m1X + m2X2 + …+ mkXk, for some 

integer k. Show that M[X] is an R[X]-module and if M satisfies the (ACC) 

then so is M[X]. 

5.3 Composition series 

5.3.1 DEFINITION. A composition series of length n for a nonzero module 

M is a chain of n + 1 submodules  

M = M0 ⊇ M1 ⊇ . . . ⊇ Mn = (0) 

such that Mi-1/Mi is a simple module for i = 1, 2, ..., n. These simple modules are 

called the composition factors of the series.  

5.3.2 THEOREM. (Jordan-Holder) If a module M has a composition 

series, then any other composition series for M is equivalent to it. 

PROOF. EXERCISE. 

As an immediate consequence of the Jordan-Holder theorem, if a module RM 

has a composition series, then all composition series for M must have the 

same length, which we denote by λ(M). This is called the length of the 

module, and we simply say that the module has finite length. Since any 

ascending chain of submodules can be refined to a composition series, λ(M) 

gives a uniform bound on the number of terms in any properly ascending 

chain of submodules. We also note that if M1 and M2 have finite length, then  

λ(M1 ⊕ M2) = λ(M1) + λ(M2). 

5.3.3 PROPOSITION. A module has finite length if and only if it is both 

Artinian and Noetherian.  

A module RM is said to be indecomposable if its only direct summands are 

(0) and M. As our first example, we note that Z is indecomposable as a 

module over itself, since the intersection of any two nonzero ideals is again 

nonzero. To give additional examples of indecomposable Z-modules, recall 
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any finite abelian group is isomorphic to a direct sum of cyclic groups of 

prime power order. Using this result, we see that a finite Z-module is 

indecomposable if and only if it is isomorphic to Zn, where n = pk for some 

prime p.  

5.3.4 PROPOSITION. If RM has finite length, then there exist finitely 

many indecomposable submodules M1, M2, . . . , Mn such that  

M = M1 ⊕ M2 ⊕ . . . ⊕ Mn. 

5.3.5 LEMMA. [Fitting] Let M be a module with length n, and let f be 

an endomorphism of M. Then 

M = Im(fn) ⊕ ker(fn) . 

5.3.6 PROPOSITION. Let M be an indecomposable module of finite length. 

Then for any endomorphism f of M the following conditions are equivalent.  

(1) f is one-to-one;  

(2) f is onto;  

(3) f is an automorphism;  

(4) f is not nilpotent.  

5.3.7 PROPOSITION. Let M be an indecomposable module of finite length, 

and let f1, f2 be endomorphisms of M. If f1 + f2 is an automorphism, then either 

f1 or f2 is an automorphism.  

5.3.8 LEMMA. Let X1, X2, Y1, Y2 be left R-modules, and let 

f: X1 ⊕ X2 → Y1 ⊕ Y2

be an isomorphism. Let  

i1 : X1 → X1 ⊕ X2  

and 

 i2 : X2 → X1 ⊕ X2

be the natural inclusion maps, and let 

p1 : Y1 ⊕ Y2 → Y1  

and  
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p2 : Y1 ⊕ Y2 → Y2

be the natural projections. If 

p1ºf ºi1 : X1 -> Y1

is an isomorphism, then  

p2ºf ºi2 : X2 -> Y2 

is an isomorphism. 

5.3.9 THEOREM. (Krull-Schmidt) Let {Xj, j = 1, 2, …, m} and { Yi, i = 1, 

2, …, n } be indecomposable left R-modules of finite length. If  

X1 ⊕ . . . ⊕ Xm ≅ Y1 ⊕ . . . ⊕ Yn, 

then m = n and there exists a permutation π ∈ Sn with π(j) = i and Xj  ≅ Yi, for 1≤ j 

≤ m.  
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5.4 Semisimple Modules 

5.4.1 DEFINITION. Let M be a left R-module. The sum of all minimal 

submodules of M is called the socle of M, and is denoted by Soc(M). The 

module M is called semisimple if it can be expressed as a sum of minimal 

submodules.  

A semisimple module RM behaves like a vector space in that any submodule 

splits off, or equivalently, that any submodule N has a complement N' such 

that N + N' = M and N ∩ N' = 0.  

5.4.2 THEOREM. Any submodule of a semisimple module has a 

complement that is a direct sum of minimal submodules. 

5.4.3 COROLLARY. The following conditions are equivalent for a module 

RM.  

(1) M is semisimple;  

(2) Soc(M) = M.  

(3) M is completely reducible;  

(4) M is isomorphic to a direct sum of simple modules.  

5.4.4 COROLLARY. Every vector space over a division ring has a basis.  

5.4.5 DEFINITION. The module RQ is said to be injective if for each one-to-

one R-homomorphism i:RM → RN and each R-homomorphism f:M → Q there 

exists an R-homomorphism f*:N → Q such that f*i = f.  
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5.4.6 THEOREM. The following conditions are equivalent for the ring R.  

(1) R is a direct sum of finitely many minimal left ideals;  

(2) R R is a semisimple module;  

(3) every left R-module is semisimple;  

(4) every left R-module is projective;  

(5) every left R-module is injective;  

(6) every left R-module is completely reducible.  

5.4.7 COROLLARY. Let D be a division ring, and let R be the ring Mn(D) 

of all n × n matrices over D. Then every left R-module is completely reducible.  

Let R be a ring, and let G be a group. The group ring RG is defined to be a 

free left R-module with the elements of G as a basis. The multiplication on RG 

is defined by  

( ∑w∈Gaww )( ∑x ∈Gbx x ) = ∑z ∈Gczz where cz = ∑z=wx awbx. 

The crucial property of a group ring is that it converts group homomorphisms 

from G into the group of units of a ring into ring homomorphisms. To be 

more precise, let S be a ring, let ϕ :G → Sx be a group homomorphism, and let    

θ:R → Z(S) be any ring homomorphism.  (Recall that Sx denotes the group of 

invertible elements of S and Z(S) denotes the center of S.) Then there is a 

unique ring homomorphism ψ :RG → S such that  

ψ(g) = ϕ(g) for all g ∈ G  and ψ(r) = θ(r) for all r ∈ R. 

5.4.8 THEOREM. (Maschke) Let G be a finite group and let K be a field 

such that |G| is not divisible by chr(K). Then every KG-module is completely 

reducible.  
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5.4.9 THEOREM. (Baer's criterion) For any left R-module Q, the 

following conditions are equivalent.  

(1) The module Q is injective;  

(2) for each left ideal A of R and each R-homomorphism f :A → Q there exists an 

extension f*:R → Q such that f*(a) = f(a) for all a ∈ A;  

(3) for each left ideal A of R and each R-homomorphism f :A → Q there exists q ∈ Q 

such that f(a) = aq, for all a ∈ A.  

5.4.10 PROPOSITION. Let D be a principal ideal domain, with quotient field 

Q.  

(a) The module DQ is injective.  

(b) Let I be any nonzero ideal of D, and let R be the ring D/I. Then R is an injective 

module, when regarded as an R-module.  
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